File size: 6,314 Bytes
5fe0e27 df32d26 72d0416 f94a527 72d0416 f94a527 72d0416 f94a527 72d0416 f94a527 72d0416 f94a527 72d0416 f94a527 72d0416 f94a527 72d0416 f94a527 72d0416 f94a527 72d0416 f94a527 72d0416 288433c 72d0416 f94a527 72d0416 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
try:
from whisperlivekit.whisper_streaming_custom.whisper_online import backend_factory, warmup_asr
except ImportError:
from .whisper_streaming_custom.whisper_online import backend_factory, warmup_asr
from argparse import Namespace, ArgumentParser
def parse_args():
parser = ArgumentParser(description="Whisper FastAPI Online Server")
parser.add_argument(
"--host",
type=str,
default="localhost",
help="The host address to bind the server to.",
)
parser.add_argument(
"--port", type=int, default=8000, help="The port number to bind the server to."
)
parser.add_argument(
"--warmup-file",
type=str,
default=None,
dest="warmup_file",
help="""
The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast.
If not set, uses https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav.
If False, no warmup is performed.
""",
)
parser.add_argument(
"--confidence-validation",
action="store_true",
help="Accelerates validation of tokens using confidence scores. Transcription will be faster but punctuation might be less accurate.",
)
parser.add_argument(
"--diarization",
action="store_true",
default=False,
help="Enable speaker diarization.",
)
parser.add_argument(
"--no-transcription",
action="store_true",
help="Disable transcription to only see live diarization results.",
)
parser.add_argument(
"--min-chunk-size",
type=float,
default=0.5,
help="Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.",
)
parser.add_argument(
"--model",
type=str,
default="tiny",
help="Name size of the Whisper model to use (default: tiny). Suggested values: tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large,large-v3-turbo. The model is automatically downloaded from the model hub if not present in model cache dir.",
)
parser.add_argument(
"--model_cache_dir",
type=str,
default=None,
help="Overriding the default model cache dir where models downloaded from the hub are saved",
)
parser.add_argument(
"--model_dir",
type=str,
default=None,
help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.",
)
parser.add_argument(
"--lan",
"--language",
type=str,
default="auto",
help="Source language code, e.g. en,de,cs, or 'auto' for language detection.",
)
parser.add_argument(
"--task",
type=str,
default="transcribe",
choices=["transcribe", "translate"],
help="Transcribe or translate.",
)
parser.add_argument(
"--backend",
type=str,
default="faster-whisper",
choices=["faster-whisper", "whisper_timestamped", "mlx-whisper", "openai-api"],
help="Load only this backend for Whisper processing.",
)
parser.add_argument(
"--vac",
action="store_true",
default=False,
help="Use VAC = voice activity controller. Recommended. Requires torch.",
)
parser.add_argument(
"--vac-chunk-size", type=float, default=0.04, help="VAC sample size in seconds."
)
parser.add_argument(
"--no-vad",
action="store_true",
help="Disable VAD (voice activity detection).",
)
parser.add_argument(
"--buffer_trimming",
type=str,
default="segment",
choices=["sentence", "segment"],
help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.',
)
parser.add_argument(
"--buffer_trimming_sec",
type=float,
default=15,
help="Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.",
)
parser.add_argument(
"-l",
"--log-level",
dest="log_level",
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
help="Set the log level",
default="DEBUG",
)
parser.add_argument("--ssl-certfile", type=str, help="Path to the SSL certificate file.", default=None)
parser.add_argument("--ssl-keyfile", type=str, help="Path to the SSL private key file.", default=None)
args = parser.parse_args()
args.transcription = not args.no_transcription
args.vad = not args.no_vad
delattr(args, 'no_transcription')
delattr(args, 'no_vad')
return args
class WhisperLiveKit:
_instance = None
_initialized = False
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self, **kwargs):
if WhisperLiveKit._initialized:
return
default_args = vars(parse_args())
merged_args = {**default_args, **kwargs}
self.args = Namespace(**merged_args)
self.asr = None
self.tokenizer = None
self.diarization = None
if self.args.transcription:
self.asr, self.tokenizer = backend_factory(self.args)
warmup_asr(self.asr, self.args.warmup_file)
if self.args.diarization:
from whisperlivekit.diarization.diarization_online import DiartDiarization
self.diarization = DiartDiarization()
WhisperLiveKit._initialized = True
def web_interface(self):
import pkg_resources
html_path = pkg_resources.resource_filename('whisperlivekit', 'web/live_transcription.html')
with open(html_path, "r", encoding="utf-8") as f:
html = f.read()
return html |