File size: 14,771 Bytes
b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c b9f09f7 ff49b3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import asyncio
import numpy as np
import ffmpeg
from time import time, sleep
from whisper_streaming_custom.whisper_online import online_factory
import math
import logging
import traceback
from state import SharedState
from formatters import format_time
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logging.getLogger().setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
class AudioProcessor:
def __init__(self, args, asr, tokenizer):
self.args = args
self.sample_rate = 16000
self.channels = 1
self.samples_per_sec = int(self.sample_rate * args.min_chunk_size)
self.bytes_per_sample = 2
self.bytes_per_sec = self.samples_per_sec * self.bytes_per_sample
self.max_bytes_per_sec = 32000 * 5 # 5 seconds of audio at 32 kHz
self.shared_state = SharedState()
self.asr = asr
self.tokenizer = tokenizer
self.ffmpeg_process = self.start_ffmpeg_decoder()
self.transcription_queue = asyncio.Queue() if self.args.transcription else None
self.diarization_queue = asyncio.Queue() if self.args.diarization else None
self.pcm_buffer = bytearray()
if self.args.transcription:
self.online = online_factory(self.args, self.asr, self.tokenizer)
def convert_pcm_to_float(self, pcm_buffer):
"""
Converts a PCM buffer in s16le format to a normalized NumPy array.
Arg: pcm_buffer. PCM buffer containing raw audio data in s16le format
Returns: np.ndarray. NumPy array of float32 type normalized between -1.0 and 1.0
"""
pcm_array = (np.frombuffer(pcm_buffer, dtype=np.int16).astype(np.float32)
/ 32768.0)
return pcm_array
async def start_ffmpeg_decoder(self):
"""
Start an FFmpeg process in async streaming mode that reads WebM from stdin
and outputs raw s16le PCM on stdout. Returns the process object.
"""
process = (
ffmpeg.input("pipe:0", format="webm")
.output(
"pipe:1",
format="s16le",
acodec="pcm_s16le",
ac=self.channels,
ar=str(self.sample_rate),
)
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
)
return process
async def restart_ffmpeg(self):
if self.ffmpeg_process:
try:
self.ffmpeg_process.kill()
await asyncio.get_event_loop().run_in_executor(None, self.ffmpeg_process.wait)
except Exception as e:
logger.warning(f"Error killing FFmpeg process: {e}")
self.ffmpeg_process = await self.start_ffmpeg_decoder()
self.pcm_buffer = bytearray()
async def ffmpeg_stdout_reader(self):
loop = asyncio.get_event_loop()
beg = time()
while True:
try:
elapsed_time = math.floor((time() - beg) * 10) / 10 # Round to 0.1 sec
ffmpeg_buffer_from_duration = max(int(32000 * elapsed_time), 4096)
beg = time()
# Read chunk with timeout
try:
chunk = await asyncio.wait_for(
loop.run_in_executor(
None, self.ffmpeg_process.stdout.read, ffmpeg_buffer_from_duration
),
timeout=15.0
)
except asyncio.TimeoutError:
logger.warning("FFmpeg read timeout. Restarting...")
await self.restart_ffmpeg()
beg = time()
continue # Skip processing and read from new process
if not chunk:
logger.info("FFmpeg stdout closed.")
break
self.pcm_buffer.extend(chunk)
if self.args.diarization and self.diarization_queue:
await self.diarization_queue.put(self.convert_pcm_to_float(self.pcm_buffer).copy())
if len(self.pcm_buffer) >= self.bytes_per_sec:
if len(self.pcm_buffer) > self.max_bytes_per_sec:
logger.warning(
f"""Audio buffer is too large: {len(self.pcm_buffer) / self.bytes_per_sec:.2f} seconds.
The model probably struggles to keep up. Consider using a smaller model.
""")
pcm_array = self.convert_pcm_to_float(self.pcm_buffer[:self.max_bytes_per_sec])
self.pcm_buffer = self.pcm_buffer[self.max_bytes_per_sec:]
if self.args.transcription and self.transcription_queue:
await self.transcription_queue.put(pcm_array.copy())
if not self.args.transcription and not self.args.diarization:
await asyncio.sleep(0.1)
except Exception as e:
logger.warning(f"Exception in ffmpeg_stdout_reader: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
break
logger.info("Exiting ffmpeg_stdout_reader...")
async def transcription_processor(self):
full_transcription = ""
sep = self.online.asr.sep
while True:
try:
pcm_array = await self.transcription_queue.get()
logger.info(f"{len(self.online.audio_buffer) / self.online.SAMPLING_RATE} seconds of audio will be processed by the model.")
# Process transcription
self.online.insert_audio_chunk(pcm_array)
new_tokens = self.online.process_iter()
if new_tokens:
full_transcription += sep.join([t.text for t in new_tokens])
_buffer = self.online.get_buffer()
buffer = _buffer.text
end_buffer = _buffer.end if _buffer.end else (new_tokens[-1].end if new_tokens else 0)
if buffer in full_transcription:
buffer = ""
await self.shared_state.update_transcription(
new_tokens, buffer, end_buffer, full_transcription, sep)
except Exception as e:
logger.warning(f"Exception in transcription_processor: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
finally:
self.transcription_queue.task_done()
async def diarization_processor(self, diarization_obj):
buffer_diarization = ""
while True:
try:
pcm_array = await self.diarization_queue.get()
# Process diarization
await diarization_obj.diarize(pcm_array)
# Get current state
state = await self.shared_state.get_current_state()
tokens = state["tokens"]
end_attributed_speaker = state["end_attributed_speaker"]
# Update speaker information
new_end_attributed_speaker = diarization_obj.assign_speakers_to_tokens(
end_attributed_speaker, tokens)
await self.shared_state.update_diarization(new_end_attributed_speaker, buffer_diarization)
except Exception as e:
logger.warning(f"Exception in diarization_processor: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
finally:
self.diarization_queue.task_done()
async def results_formatter(self, websocket):
while True:
try:
# Get the current state
state = await self.shared_state.get_current_state()
tokens = state["tokens"]
buffer_transcription = state["buffer_transcription"]
buffer_diarization = state["buffer_diarization"]
end_attributed_speaker = state["end_attributed_speaker"]
remaining_time_transcription = state["remaining_time_transcription"]
remaining_time_diarization = state["remaining_time_diarization"]
sep = state["sep"]
# If diarization is enabled but no transcription, add dummy tokens periodically
if (not tokens or tokens[-1].is_dummy) and not self.args.transcription and self.args.diarization:
await self.shared_state.add_dummy_token()
sleep(0.5)
state = await self.shared_state.get_current_state()
tokens = state["tokens"]
# Process tokens to create response
previous_speaker = -1
lines = []
last_end_diarized = 0
undiarized_text = []
for token in tokens:
speaker = token.speaker
if self.args.diarization:
if (speaker == -1 or speaker == 0) and token.end >= end_attributed_speaker:
undiarized_text.append(token.text)
continue
elif (speaker == -1 or speaker == 0) and token.end < end_attributed_speaker:
speaker = previous_speaker
if speaker not in [-1, 0]:
last_end_diarized = max(token.end, last_end_diarized)
if speaker != previous_speaker or not lines:
lines.append(
{
"speaker": speaker,
"text": token.text,
"beg": format_time(token.start),
"end": format_time(token.end),
"diff": round(token.end - last_end_diarized, 2)
}
)
previous_speaker = speaker
elif token.text: # Only append if text isn't empty
lines[-1]["text"] += sep + token.text
lines[-1]["end"] = format_time(token.end)
lines[-1]["diff"] = round(token.end - last_end_diarized, 2)
if undiarized_text:
combined_buffer_diarization = sep.join(undiarized_text)
if buffer_transcription:
combined_buffer_diarization += sep
await self.shared_state.update_diarization(end_attributed_speaker, combined_buffer_diarization)
buffer_diarization = combined_buffer_diarization
if lines:
response = {
"lines": lines,
"buffer_transcription": buffer_transcription,
"buffer_diarization": buffer_diarization,
"remaining_time_transcription": remaining_time_transcription,
"remaining_time_diarization": remaining_time_diarization
}
else:
response = {
"lines": [{
"speaker": 1,
"text": "",
"beg": format_time(0),
"end": format_time(tokens[-1].end) if tokens else format_time(0),
"diff": 0
}],
"buffer_transcription": buffer_transcription,
"buffer_diarization": buffer_diarization,
"remaining_time_transcription": remaining_time_transcription,
"remaining_time_diarization": remaining_time_diarization
}
response_content = ' '.join([str(line['speaker']) + ' ' + line["text"] for line in lines]) + ' | ' + buffer_transcription + ' | ' + buffer_diarization
if response_content != self.shared_state.last_response_content:
if lines or buffer_transcription or buffer_diarization:
await websocket.send_json(response)
self.shared_state.last_response_content = response_content
# Add a small delay to avoid overwhelming the client
await asyncio.sleep(0.1)
except Exception as e:
logger.warning(f"Exception in results_formatter: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
await asyncio.sleep(0.5) # Back off on error
async def create_tasks(self, websocket, diarization):
tasks = []
if self.args.transcription and self.online:
tasks.append(asyncio.create_task(self.transcription_processor()))
if self.args.diarization and diarization:
tasks.append(asyncio.create_task(self.diarization_processor(diarization)))
formatter_task = asyncio.create_task(self.results_formatter(websocket))
tasks.append(formatter_task)
stdout_reader_task = asyncio.create_task(self.ffmpeg_stdout_reader())
tasks.append(stdout_reader_task)
self.tasks = tasks
self.diarization = diarization
async def cleanup(self):
for task in self.tasks:
task.cancel()
try:
await asyncio.gather(*self.tasks, return_exceptions=True)
self.ffmpeg_process.stdin.close()
self.ffmpeg_process.wait()
except Exception as e:
logger.warning(f"Error during cleanup: {e}")
if self.args.diarization and self.diarization:
self.diarization.close()
async def process_audio(self, message):
try:
self.ffmpeg_process.stdin.write(message)
self.ffmpeg_process.stdin.flush()
except (BrokenPipeError, AttributeError) as e:
logger.warning(f"Error writing to FFmpeg: {e}. Restarting...")
await self.restart_ffmpeg()
self.ffmpeg_process.stdin.write(message)
self.ffmpeg_process.stdin.flush()
|