File size: 32,000 Bytes
69c754e 72d0416 00f19b9 69c754e c2bd36d 69c754e 72d0416 69c754e 00f19b9 69c754e 72d0416 00f19b9 72d0416 69c754e 72d0416 69c754e 72d0416 69c754e 333d52d c2bd36d 69c754e c2bd36d 69c754e 72d0416 69c754e 72d0416 69c754e c2bd36d 69c754e 72d0416 69c754e 93ceb69 69c754e 333d52d 69c754e 333d52d 69c754e 333d52d 69c754e 333d52d 69c754e 333d52d 69c754e 333d52d 69c754e 333d52d 183bbc5 333d52d 183bbc5 69c754e c2bd36d 69c754e 183bbc5 69c754e c2bd36d 69c754e 78d7306 69c754e c2bd36d 69c754e c2bd36d 0d02f79 69c754e 78d7306 69c754e 78d7306 69c754e 78d7306 69c754e 78d7306 69c754e c2bd36d 69c754e c2bd36d 69c754e c2bd36d 69c754e c2bd36d 69c754e c2bd36d 69c754e 0c9255f 69c754e 0c9255f 69c754e 0c9255f 69c754e 0c9255f 69c754e 0c9255f 69c754e 0c9255f 69c754e c2bd36d 69c754e 333d52d 72d0416 69c754e c2bd36d 69c754e c2bd36d 69c754e c2bd36d 333d52d c2bd36d 333d52d c2bd36d 69c754e c2bd36d 69c754e c2bd36d 69c754e c2bd36d 69c754e c2bd36d 69c754e c2bd36d 333d52d 183bbc5 333d52d 183bbc5 333d52d 183bbc5 333d52d 183bbc5 333d52d c2bd36d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
import asyncio
import numpy as np
import ffmpeg
from time import time, sleep
import math
import logging
import traceback
from datetime import timedelta
from whisperlivekit.timed_objects import ASRToken
from whisperlivekit.whisper_streaming_custom.whisper_online import online_factory
from whisperlivekit.core import TranscriptionEngine
# Set up logging once
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
SENTINEL = object() # unique sentinel object for end of stream marker
def format_time(seconds: float) -> str:
"""Format seconds as HH:MM:SS."""
return str(timedelta(seconds=int(seconds)))
class AudioProcessor:
"""
Processes audio streams for transcription and diarization.
Handles audio processing, state management, and result formatting.
"""
def __init__(self, **kwargs):
"""Initialize the audio processor with configuration, models, and state."""
if 'transcription_engine' in kwargs and isinstance(kwargs['transcription_engine'], TranscriptionEngine):
models = kwargs['transcription_engine']
else:
models = TranscriptionEngine(**kwargs)
# Audio processing settings
self.args = models.args
self.sample_rate = 16000
self.channels = 1
self.samples_per_sec = int(self.sample_rate * self.args.min_chunk_size)
self.bytes_per_sample = 2
self.bytes_per_sec = self.samples_per_sec * self.bytes_per_sample
self.max_bytes_per_sec = 32000 * 5 # 5 seconds of audio at 32 kHz
self.last_ffmpeg_activity = time()
self.ffmpeg_health_check_interval = 5
self.ffmpeg_max_idle_time = 10
# State management
self.is_stopping = False
self.tokens = []
self.buffer_transcription = ""
self.buffer_diarization = ""
self.full_transcription = ""
self.end_buffer = 0
self.end_attributed_speaker = 0
self.lock = asyncio.Lock()
self.beg_loop = time()
self.sep = " " # Default separator
self.last_response_content = ""
# Models and processing
self.asr = models.asr
self.tokenizer = models.tokenizer
self.diarization = models.diarization
self.ffmpeg_process = self.start_ffmpeg_decoder()
self.transcription_queue = asyncio.Queue() if self.args.transcription else None
self.diarization_queue = asyncio.Queue() if self.args.diarization else None
self.pcm_buffer = bytearray()
# Task references
self.transcription_task = None
self.diarization_task = None
self.ffmpeg_reader_task = None
self.watchdog_task = None
self.all_tasks_for_cleanup = []
# Initialize transcription engine if enabled
if self.args.transcription:
self.online = online_factory(self.args, models.asr, models.tokenizer)
def convert_pcm_to_float(self, pcm_buffer):
"""Convert PCM buffer in s16le format to normalized NumPy array."""
return np.frombuffer(pcm_buffer, dtype=np.int16).astype(np.float32) / 32768.0
def start_ffmpeg_decoder(self):
"""Start FFmpeg process for WebM to PCM conversion."""
try:
return (ffmpeg.input("pipe:0", format="webm")
.output("pipe:1", format="s16le", acodec="pcm_s16le",
ac=self.channels, ar=str(self.sample_rate))
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True))
except FileNotFoundError:
error = """
FFmpeg is not installed or not found in your system's PATH.
Please install FFmpeg to enable audio processing.
Installation instructions:
# Ubuntu/Debian:
sudo apt update && sudo apt install ffmpeg
# macOS (using Homebrew):
brew install ffmpeg
# Windows:
# 1. Download the latest static build from https://ffmpeg.org/download.html
# 2. Extract the archive (e.g., to C:\\FFmpeg).
# 3. Add the 'bin' directory (e.g., C:\\FFmpeg\\bin) to your system's PATH environment variable.
After installation, please restart the application.
"""
logger.error(error)
raise FileNotFoundError(error)
async def restart_ffmpeg(self):
"""Restart the FFmpeg process after failure."""
logger.warning("Restarting FFmpeg process...")
if self.ffmpeg_process:
try:
# we check if process is still running
if self.ffmpeg_process.poll() is None:
logger.info("Terminating existing FFmpeg process")
self.ffmpeg_process.stdin.close()
self.ffmpeg_process.terminate()
# wait for termination with timeout
try:
await asyncio.wait_for(
asyncio.get_event_loop().run_in_executor(None, self.ffmpeg_process.wait),
timeout=5.0
)
except asyncio.TimeoutError:
logger.warning("FFmpeg process did not terminate, killing forcefully")
self.ffmpeg_process.kill()
await asyncio.get_event_loop().run_in_executor(None, self.ffmpeg_process.wait)
except Exception as e:
logger.error(f"Error during FFmpeg process termination: {e}")
logger.error(traceback.format_exc())
# we start new process
try:
logger.info("Starting new FFmpeg process")
self.ffmpeg_process = self.start_ffmpeg_decoder()
self.pcm_buffer = bytearray()
self.last_ffmpeg_activity = time()
logger.info("FFmpeg process restarted successfully")
except Exception as e:
logger.error(f"Failed to restart FFmpeg process: {e}")
logger.error(traceback.format_exc())
# try again after 5s
await asyncio.sleep(5)
try:
self.ffmpeg_process = self.start_ffmpeg_decoder()
self.pcm_buffer = bytearray()
self.last_ffmpeg_activity = time()
logger.info("FFmpeg process restarted successfully on second attempt")
except Exception as e2:
logger.critical(f"Failed to restart FFmpeg process on second attempt: {e2}")
logger.critical(traceback.format_exc())
async def update_transcription(self, new_tokens, buffer, end_buffer, full_transcription, sep):
"""Thread-safe update of transcription with new data."""
async with self.lock:
self.tokens.extend(new_tokens)
self.buffer_transcription = buffer
self.end_buffer = end_buffer
self.full_transcription = full_transcription
self.sep = sep
async def update_diarization(self, end_attributed_speaker, buffer_diarization=""):
"""Thread-safe update of diarization with new data."""
async with self.lock:
self.end_attributed_speaker = end_attributed_speaker
if buffer_diarization:
self.buffer_diarization = buffer_diarization
async def add_dummy_token(self):
"""Placeholder token when no transcription is available."""
async with self.lock:
current_time = time() - self.beg_loop
self.tokens.append(ASRToken(
start=current_time, end=current_time + 1,
text=".", speaker=-1, is_dummy=True
))
async def get_current_state(self):
"""Get current state."""
async with self.lock:
current_time = time()
# Calculate remaining times
remaining_transcription = 0
if self.end_buffer > 0:
remaining_transcription = max(0, round(current_time - self.beg_loop - self.end_buffer, 2))
remaining_diarization = 0
if self.tokens:
latest_end = max(self.end_buffer, self.tokens[-1].end if self.tokens else 0)
remaining_diarization = max(0, round(latest_end - self.end_attributed_speaker, 2))
return {
"tokens": self.tokens.copy(),
"buffer_transcription": self.buffer_transcription,
"buffer_diarization": self.buffer_diarization,
"end_buffer": self.end_buffer,
"end_attributed_speaker": self.end_attributed_speaker,
"sep": self.sep,
"remaining_time_transcription": remaining_transcription,
"remaining_time_diarization": remaining_diarization
}
async def reset(self):
"""Reset all state variables to initial values."""
async with self.lock:
self.tokens = []
self.buffer_transcription = self.buffer_diarization = ""
self.end_buffer = self.end_attributed_speaker = 0
self.full_transcription = self.last_response_content = ""
self.beg_loop = time()
async def ffmpeg_stdout_reader(self):
"""Read audio data from FFmpeg stdout and process it."""
loop = asyncio.get_event_loop()
beg = time()
while True:
try:
current_time = time()
elapsed_time = math.floor((current_time - beg) * 10) / 10
buffer_size = max(int(32000 * elapsed_time), 4096)
beg = current_time
# Detect idle state much more quickly
if current_time - self.last_ffmpeg_activity > self.ffmpeg_max_idle_time:
logger.warning(f"FFmpeg process idle for {current_time - self.last_ffmpeg_activity:.2f}s. Restarting...")
await self.restart_ffmpeg()
beg = time()
self.last_ffmpeg_activity = time()
continue
chunk = await loop.run_in_executor(None, self.ffmpeg_process.stdout.read, buffer_size)
if chunk:
self.last_ffmpeg_activity = time()
if not chunk:
logger.info("FFmpeg stdout closed, no more data to read.")
break
self.pcm_buffer.extend(chunk)
# Send to diarization if enabled
if self.args.diarization and self.diarization_queue:
await self.diarization_queue.put(
self.convert_pcm_to_float(self.pcm_buffer).copy()
)
# Process when enough data
if len(self.pcm_buffer) >= self.bytes_per_sec:
if len(self.pcm_buffer) > self.max_bytes_per_sec:
logger.warning(
f"Audio buffer too large: {len(self.pcm_buffer) / self.bytes_per_sec:.2f}s. "
f"Consider using a smaller model."
)
# Process audio chunk
pcm_array = self.convert_pcm_to_float(self.pcm_buffer[:self.max_bytes_per_sec])
self.pcm_buffer = self.pcm_buffer[self.max_bytes_per_sec:]
# Send to transcription if enabled
if self.args.transcription and self.transcription_queue:
await self.transcription_queue.put(pcm_array.copy())
# Sleep if no processing is happening
if not self.args.transcription and not self.args.diarization:
await asyncio.sleep(0.1)
except Exception as e:
logger.warning(f"Exception in ffmpeg_stdout_reader: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
break
logger.info("FFmpeg stdout processing finished. Signaling downstream processors.")
if self.args.transcription and self.transcription_queue:
await self.transcription_queue.put(SENTINEL)
logger.debug("Sentinel put into transcription_queue.")
if self.args.diarization and self.diarization_queue:
await self.diarization_queue.put(SENTINEL)
logger.debug("Sentinel put into diarization_queue.")
async def transcription_processor(self):
"""Process audio chunks for transcription."""
self.full_transcription = ""
self.sep = self.online.asr.sep
cumulative_pcm_duration_stream_time = 0.0
while True:
try:
pcm_array = await self.transcription_queue.get()
if pcm_array is SENTINEL:
logger.debug("Transcription processor received sentinel. Finishing.")
self.transcription_queue.task_done()
break
if not self.online: # Should not happen if queue is used
logger.warning("Transcription processor: self.online not initialized.")
self.transcription_queue.task_done()
continue
asr_internal_buffer_duration_s = len(self.online.audio_buffer) / self.online.SAMPLING_RATE
transcription_lag_s = max(0.0, time() - self.beg_loop - self.end_buffer)
logger.info(
f"ASR processing: internal_buffer={asr_internal_buffer_duration_s:.2f}s, "
f"lag={transcription_lag_s:.2f}s."
)
# Process transcription
duration_this_chunk = len(pcm_array) / self.sample_rate if isinstance(pcm_array, np.ndarray) else 0
cumulative_pcm_duration_stream_time += duration_this_chunk
stream_time_end_of_current_pcm = cumulative_pcm_duration_stream_time
self.online.insert_audio_chunk(pcm_array, stream_time_end_of_current_pcm)
new_tokens, current_audio_processed_upto = self.online.process_iter()
if new_tokens:
self.full_transcription += self.sep.join([t.text for t in new_tokens])
# Get buffer information
_buffer_transcript_obj = self.online.get_buffer()
buffer_text = _buffer_transcript_obj.text
candidate_end_times = [self.end_buffer]
if new_tokens:
candidate_end_times.append(new_tokens[-1].end)
if _buffer_transcript_obj.end is not None:
candidate_end_times.append(_buffer_transcript_obj.end)
candidate_end_times.append(current_audio_processed_upto)
new_end_buffer = max(candidate_end_times)
# Avoid duplicating content
if buffer_text in self.full_transcription:
buffer_text = ""
await self.update_transcription(
new_tokens, buffer_text, new_end_buffer, self.full_transcription, self.sep
)
self.transcription_queue.task_done()
except Exception as e:
logger.warning(f"Exception in transcription_processor: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
if 'pcm_array' in locals() and pcm_array is not SENTINEL : # Check if pcm_array was assigned from queue
self.transcription_queue.task_done()
logger.info("Transcription processor task finished.")
async def diarization_processor(self, diarization_obj):
"""Process audio chunks for speaker diarization."""
buffer_diarization = ""
while True:
try:
pcm_array = await self.diarization_queue.get()
if pcm_array is SENTINEL:
logger.debug("Diarization processor received sentinel. Finishing.")
self.diarization_queue.task_done()
break
# Process diarization
await diarization_obj.diarize(pcm_array)
# Get current state and update speakers
state = await self.get_current_state()
new_end = diarization_obj.assign_speakers_to_tokens(
state["end_attributed_speaker"], state["tokens"]
)
await self.update_diarization(new_end, buffer_diarization)
self.diarization_queue.task_done()
except Exception as e:
logger.warning(f"Exception in diarization_processor: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
if 'pcm_array' in locals() and pcm_array is not SENTINEL:
self.diarization_queue.task_done()
logger.info("Diarization processor task finished.")
async def results_formatter(self):
"""Format processing results for output."""
while True:
try:
# Get current state
state = await self.get_current_state()
tokens = state["tokens"]
buffer_transcription = state["buffer_transcription"]
buffer_diarization = state["buffer_diarization"]
end_attributed_speaker = state["end_attributed_speaker"]
sep = state["sep"]
# Add dummy tokens if needed
if (not tokens or tokens[-1].is_dummy) and not self.args.transcription and self.args.diarization:
await self.add_dummy_token()
sleep(0.5)
state = await self.get_current_state()
tokens = state["tokens"]
# Format output
previous_speaker = -1
lines = []
last_end_diarized = 0
undiarized_text = []
# Process each token
for token in tokens:
speaker = token.speaker
# Handle diarization
if self.args.diarization:
if (speaker in [-1, 0]) and token.end >= end_attributed_speaker:
undiarized_text.append(token.text)
continue
elif (speaker in [-1, 0]) and token.end < end_attributed_speaker:
speaker = previous_speaker
if speaker not in [-1, 0]:
last_end_diarized = max(token.end, last_end_diarized)
# Group by speaker
if speaker != previous_speaker or not lines:
lines.append({
"speaker": speaker,
"text": token.text,
"beg": format_time(token.start),
"end": format_time(token.end),
"diff": round(token.end - last_end_diarized, 2)
})
previous_speaker = speaker
elif token.text: # Only append if text isn't empty
lines[-1]["text"] += sep + token.text
lines[-1]["end"] = format_time(token.end)
lines[-1]["diff"] = round(token.end - last_end_diarized, 2)
# Handle undiarized text
if undiarized_text:
combined = sep.join(undiarized_text)
if buffer_transcription:
combined += sep
await self.update_diarization(end_attributed_speaker, combined)
buffer_diarization = combined
response_status = "active_transcription"
final_lines_for_response = lines.copy()
if not tokens and not buffer_transcription and not buffer_diarization:
response_status = "no_audio_detected"
final_lines_for_response = []
elif response_status == "active_transcription" and not final_lines_for_response:
final_lines_for_response = [{
"speaker": 1,
"text": "",
"beg": format_time(state.get("end_buffer", 0)),
"end": format_time(state.get("end_buffer", 0)),
"diff": 0
}]
response = {
"status": response_status,
"lines": final_lines_for_response,
"buffer_transcription": buffer_transcription,
"buffer_diarization": buffer_diarization,
"remaining_time_transcription": state["remaining_time_transcription"],
"remaining_time_diarization": state["remaining_time_diarization"]
}
current_response_signature = f"{response_status} | " + \
' '.join([f"{line['speaker']} {line['text']}" for line in final_lines_for_response]) + \
f" | {buffer_transcription} | {buffer_diarization}"
if current_response_signature != self.last_response_content and \
(final_lines_for_response or buffer_transcription or buffer_diarization or response_status == "no_audio_detected"):
yield response
self.last_response_content = current_response_signature
# Check for termination condition
if self.is_stopping:
all_processors_done = True
if self.args.transcription and self.transcription_task and not self.transcription_task.done():
all_processors_done = False
if self.args.diarization and self.diarization_task and not self.diarization_task.done():
all_processors_done = False
if all_processors_done:
logger.info("Results formatter: All upstream processors are done and in stopping state. Terminating.")
final_state = await self.get_current_state()
return
await asyncio.sleep(0.1) # Avoid overwhelming the client
except Exception as e:
logger.warning(f"Exception in results_formatter: {e}")
logger.warning(f"Traceback: {traceback.format_exc()}")
await asyncio.sleep(0.5) # Back off on error
async def create_tasks(self):
"""Create and start processing tasks."""
self.all_tasks_for_cleanup = []
processing_tasks_for_watchdog = []
if self.args.transcription and self.online:
self.transcription_task = asyncio.create_task(self.transcription_processor())
self.all_tasks_for_cleanup.append(self.transcription_task)
processing_tasks_for_watchdog.append(self.transcription_task)
if self.args.diarization and self.diarization:
self.diarization_task = asyncio.create_task(self.diarization_processor(self.diarization))
self.all_tasks_for_cleanup.append(self.diarization_task)
processing_tasks_for_watchdog.append(self.diarization_task)
self.ffmpeg_reader_task = asyncio.create_task(self.ffmpeg_stdout_reader())
self.all_tasks_for_cleanup.append(self.ffmpeg_reader_task)
processing_tasks_for_watchdog.append(self.ffmpeg_reader_task)
# Monitor overall system health
self.watchdog_task = asyncio.create_task(self.watchdog(processing_tasks_for_watchdog))
self.all_tasks_for_cleanup.append(self.watchdog_task)
return self.results_formatter()
async def watchdog(self, tasks_to_monitor):
"""Monitors the health of critical processing tasks."""
while True:
try:
await asyncio.sleep(10)
current_time = time()
for i, task in enumerate(tasks_to_monitor):
if task.done():
exc = task.exception()
task_name = task.get_name() if hasattr(task, 'get_name') else f"Monitored Task {i}"
if exc:
logger.error(f"{task_name} unexpectedly completed with exception: {exc}")
else:
logger.info(f"{task_name} completed normally.")
ffmpeg_idle_time = current_time - self.last_ffmpeg_activity
if ffmpeg_idle_time > 15:
logger.warning(f"FFmpeg idle for {ffmpeg_idle_time:.2f}s - may need attention.")
if ffmpeg_idle_time > 30 and not self.is_stopping:
logger.error("FFmpeg idle for too long and not in stopping phase, forcing restart.")
await self.restart_ffmpeg()
except asyncio.CancelledError:
logger.info("Watchdog task cancelled.")
break
except Exception as e:
logger.error(f"Error in watchdog task: {e}", exc_info=True)
async def cleanup(self):
"""Clean up resources when processing is complete."""
logger.info("Starting cleanup of AudioProcessor resources.")
for task in self.all_tasks_for_cleanup:
if task and not task.done():
task.cancel()
created_tasks = [t for t in self.all_tasks_for_cleanup if t]
if created_tasks:
await asyncio.gather(*created_tasks, return_exceptions=True)
logger.info("All processing tasks cancelled or finished.")
if self.ffmpeg_process:
if self.ffmpeg_process.stdin and not self.ffmpeg_process.stdin.closed:
try:
self.ffmpeg_process.stdin.close()
except Exception as e:
logger.warning(f"Error closing ffmpeg stdin during cleanup: {e}")
# Wait for ffmpeg process to terminate
if self.ffmpeg_process.poll() is None: # Check if process is still running
logger.info("Waiting for FFmpeg process to terminate...")
try:
# Run wait in executor to avoid blocking async loop
await asyncio.get_event_loop().run_in_executor(None, self.ffmpeg_process.wait, 5.0) # 5s timeout
except Exception as e: # subprocess.TimeoutExpired is not directly caught by asyncio.wait_for with run_in_executor
logger.warning(f"FFmpeg did not terminate gracefully, killing. Error: {e}")
self.ffmpeg_process.kill()
await asyncio.get_event_loop().run_in_executor(None, self.ffmpeg_process.wait) # Wait for kill
logger.info("FFmpeg process terminated.")
if self.args.diarization and hasattr(self, 'diarization') and hasattr(self.diarization, 'close'):
self.diarization.close()
logger.info("AudioProcessor cleanup complete.")
async def process_audio(self, message):
"""Process incoming audio data."""
# If already stopping or stdin is closed, ignore further audio, especially residual chunks.
if self.is_stopping or (self.ffmpeg_process and self.ffmpeg_process.stdin and self.ffmpeg_process.stdin.closed):
logger.warning(f"AudioProcessor is stopping or stdin is closed. Ignoring incoming audio message (length: {len(message)}).")
if not message and self.ffmpeg_process and self.ffmpeg_process.stdin and not self.ffmpeg_process.stdin.closed:
logger.info("Received empty message while already in stopping state; ensuring stdin is closed.")
try:
self.ffmpeg_process.stdin.close()
except Exception as e:
logger.warning(f"Error closing ffmpeg stdin on redundant stop signal during stopping state: {e}")
return
if not message: # primary signal to start stopping
logger.info("Empty audio message received, initiating stop sequence.")
self.is_stopping = True
if self.ffmpeg_process and self.ffmpeg_process.stdin and not self.ffmpeg_process.stdin.closed:
try:
self.ffmpeg_process.stdin.close()
logger.info("FFmpeg stdin closed due to primary stop signal.")
except Exception as e:
logger.warning(f"Error closing ffmpeg stdin on stop: {e}")
return
retry_count = 0
max_retries = 3
# Log periodic heartbeats showing ongoing audio proc
current_time = time()
if not hasattr(self, '_last_heartbeat') or current_time - self._last_heartbeat >= 10:
logger.debug(f"Processing audio chunk, last FFmpeg activity: {current_time - self.last_ffmpeg_activity:.2f}s ago")
self._last_heartbeat = current_time
while retry_count < max_retries:
try:
if not self.ffmpeg_process or not hasattr(self.ffmpeg_process, 'stdin') or self.ffmpeg_process.poll() is not None:
logger.warning("FFmpeg process not available, restarting...")
await self.restart_ffmpeg()
loop = asyncio.get_running_loop()
try:
await asyncio.wait_for(
loop.run_in_executor(None, lambda: self.ffmpeg_process.stdin.write(message)),
timeout=2.0
)
except asyncio.TimeoutError:
logger.warning("FFmpeg write operation timed out, restarting...")
await self.restart_ffmpeg()
retry_count += 1
continue
try:
await asyncio.wait_for(
loop.run_in_executor(None, self.ffmpeg_process.stdin.flush),
timeout=2.0
)
except asyncio.TimeoutError:
logger.warning("FFmpeg flush operation timed out, restarting...")
await self.restart_ffmpeg()
retry_count += 1
continue
self.last_ffmpeg_activity = time()
return
except (BrokenPipeError, AttributeError, OSError) as e:
retry_count += 1
logger.warning(f"Error writing to FFmpeg: {e}. Retry {retry_count}/{max_retries}...")
if retry_count < max_retries:
await self.restart_ffmpeg()
await asyncio.sleep(0.5)
else:
logger.error("Maximum retries reached for FFmpeg process")
await self.restart_ffmpeg()
return
|