|
|
|
import sys |
|
import numpy as np |
|
import librosa |
|
from functools import lru_cache |
|
import time |
|
import datetime |
|
|
|
|
|
@lru_cache |
|
def load_audio(fname): |
|
a, _ = librosa.load(fname, sr=16000) |
|
return a |
|
|
|
def load_audio_chunk(fname, beg, end): |
|
audio = load_audio(fname) |
|
beg_s = int(beg*16000) |
|
end_s = int(end*16000) |
|
return audio[beg_s:end_s] |
|
|
|
|
|
|
|
|
|
class ASRBase: |
|
|
|
sep = " " |
|
|
|
|
|
def __init__(self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr): |
|
self.logfile = logfile |
|
|
|
self.transcribe_kargs = {} |
|
if lan == "auto": |
|
self.original_language = None |
|
else: |
|
self.original_language = lan |
|
|
|
self.model = self.load_model(modelsize, cache_dir, model_dir) |
|
|
|
|
|
def load_model(self, modelsize, cache_dir): |
|
raise NotImplemented("must be implemented in the child class") |
|
|
|
def transcribe(self, audio, init_prompt=""): |
|
raise NotImplemented("must be implemented in the child class") |
|
|
|
def use_vad(self): |
|
raise NotImplemented("must be implemented in the child class") |
|
|
|
|
|
class WhisperTimestampedASR(ASRBase): |
|
"""Uses whisper_timestamped library as the backend. Initially, we tested the code on this backend. It worked, but slower than faster-whisper. |
|
On the other hand, the installation for GPU could be easier. |
|
""" |
|
|
|
sep = " " |
|
|
|
def load_model(self, modelsize=None, cache_dir=None, model_dir=None): |
|
import whisper |
|
from whisper_timestamped import transcribe_timestamped |
|
self.transcribe_timestamped = transcribe_timestamped |
|
if model_dir is not None: |
|
print("ignoring model_dir, not implemented",file=self.logfile) |
|
return whisper.load_model(modelsize, download_root=cache_dir) |
|
|
|
def transcribe(self, audio, init_prompt=""): |
|
result = self.transcribe_timestamped(self.model, |
|
audio, language=self.original_language, |
|
initial_prompt=init_prompt, verbose=None, |
|
condition_on_previous_text=True, **self.transcribe_kargs) |
|
return result |
|
|
|
def ts_words(self,r): |
|
|
|
o = [] |
|
for s in r["segments"]: |
|
for w in s["words"]: |
|
t = (w["start"],w["end"],w["text"]) |
|
o.append(t) |
|
return o |
|
|
|
def segments_end_ts(self, res): |
|
return [s["end"] for s in res["segments"]] |
|
|
|
def use_vad(self): |
|
self.transcribe_kargs["vad"] = True |
|
|
|
def set_translate_task(self): |
|
self.transcribe_kargs["task"] = "translate" |
|
|
|
|
|
|
|
|
|
class FasterWhisperASR(ASRBase): |
|
"""Uses faster-whisper library as the backend. Works much faster, appx 4-times (in offline mode). For GPU, it requires installation with a specific CUDNN version. |
|
""" |
|
|
|
sep = "" |
|
|
|
def load_model(self, modelsize=None, cache_dir=None, model_dir=None): |
|
from faster_whisper import WhisperModel |
|
if model_dir is not None: |
|
print(f"Loading whisper model from model_dir {model_dir}. modelsize and cache_dir parameters are not used.",file=self.logfile) |
|
model_size_or_path = model_dir |
|
elif modelsize is not None: |
|
model_size_or_path = modelsize |
|
else: |
|
raise ValueError("modelsize or model_dir parameter must be set") |
|
|
|
|
|
|
|
model = WhisperModel(model_size_or_path, device="cuda", compute_type="float16", download_root=cache_dir) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return model |
|
|
|
def transcribe(self, audio, init_prompt=""): |
|
|
|
|
|
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs) |
|
|
|
|
|
return list(segments) |
|
|
|
def ts_words(self, segments): |
|
o = [] |
|
for segment in segments: |
|
for word in segment.words: |
|
if segment.no_speech_prob > 0.9: |
|
continue |
|
|
|
w = word.word |
|
t = (word.start, word.end, w) |
|
o.append(t) |
|
return o |
|
|
|
def segments_end_ts(self, res): |
|
return [s.end for s in res] |
|
|
|
def use_vad(self): |
|
self.transcribe_kargs["vad_filter"] = True |
|
|
|
def set_translate_task(self): |
|
self.transcribe_kargs["task"] = "translate" |
|
|
|
|
|
|
|
class HypothesisBuffer: |
|
|
|
def __init__(self, logfile=sys.stderr): |
|
self.commited_in_buffer = [] |
|
self.buffer = [] |
|
self.new = [] |
|
|
|
self.last_commited_time = 0 |
|
self.last_commited_word = None |
|
|
|
self.logfile = logfile |
|
|
|
def insert(self, new, offset): |
|
|
|
|
|
|
|
new = [(a+offset,b+offset,t) for a,b,t in new] |
|
self.new = [(a,b,t) for a,b,t in new if a > self.last_commited_time-0.1] |
|
|
|
if len(self.new) >= 1: |
|
a,b,t = self.new[0] |
|
if abs(a - self.last_commited_time) < 1: |
|
if self.commited_in_buffer: |
|
|
|
cn = len(self.commited_in_buffer) |
|
nn = len(self.new) |
|
for i in range(1,min(min(cn,nn),5)+1): |
|
c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1]) |
|
tail = " ".join(self.new[j-1][2] for j in range(1,i+1)) |
|
if c == tail: |
|
print("removing last",i,"words:",file=self.logfile) |
|
for j in range(i): |
|
print("\t",self.new.pop(0),file=self.logfile) |
|
break |
|
|
|
def flush(self): |
|
|
|
|
|
commit = [] |
|
while self.new: |
|
na, nb, nt = self.new[0] |
|
|
|
if len(self.buffer) == 0: |
|
break |
|
|
|
if nt == self.buffer[0][2]: |
|
commit.append((na,nb,nt)) |
|
self.last_commited_word = nt |
|
self.last_commited_time = nb |
|
self.buffer.pop(0) |
|
self.new.pop(0) |
|
else: |
|
break |
|
self.buffer = self.new |
|
self.new = [] |
|
self.commited_in_buffer.extend(commit) |
|
return commit |
|
|
|
def pop_commited(self, time): |
|
while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time: |
|
self.commited_in_buffer.pop(0) |
|
|
|
def complete(self): |
|
return self.buffer |
|
|
|
class OnlineASRProcessor: |
|
|
|
SAMPLING_RATE = 16000 |
|
|
|
def __init__(self, asr, tokenizer=None, buffer_trimming=("segment", 15), logfile=sys.stderr): |
|
"""asr: WhisperASR object |
|
tokenizer: sentence tokenizer object for the target language. Must have a method *split* that behaves like the one of MosesTokenizer. It can be None, if "segment" buffer trimming option is used, then tokenizer is not used at all. |
|
("segment", 15) |
|
buffer_trimming: a pair of (option, seconds), where option is either "sentence" or "segment", and seconds is a number. Buffer is trimmed if it is longer than "seconds" threshold. Default is the most recommended option. |
|
logfile: where to store the log. |
|
""" |
|
self.asr = asr |
|
self.tokenizer = tokenizer |
|
self.logfile = logfile |
|
|
|
self.init() |
|
|
|
self.buffer_trimming_way, self.buffer_trimming_sec = buffer_trimming |
|
|
|
def init(self, keep_offset=False): |
|
"""run this when starting or restarting processing""" |
|
self.audio_buffer = np.array([],dtype=np.float32) |
|
self.transcript_buffer = HypothesisBuffer(logfile=self.logfile) |
|
if not keep_offset: |
|
self.buffer_time_offset = 0 |
|
self.transcript_buffer.last_commited_time = 0 |
|
else: |
|
self.transcript_buffer.last_commited_time = self.buffer_time_offset |
|
|
|
self.commited = [] |
|
self.last_chunked_at = 0 |
|
|
|
|
|
def insert_audio_chunk(self, audio): |
|
self.audio_buffer = np.append(self.audio_buffer, audio) |
|
|
|
def prompt(self): |
|
"""Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer. |
|
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons. |
|
""" |
|
k = max(0,len(self.commited)-1) |
|
while k > 0 and self.commited[k-1][1] > self.last_chunked_at: |
|
k -= 1 |
|
|
|
p = self.commited[:k] |
|
p = [t for _,_,t in p] |
|
prompt = [] |
|
l = 0 |
|
while p and l < 200: |
|
x = p.pop(-1) |
|
l += len(x)+1 |
|
prompt.append(x) |
|
non_prompt = self.commited[k:] |
|
return self.asr.sep.join(prompt[::-1]), self.asr.sep.join(t for _,_,t in non_prompt) |
|
|
|
def process_iter(self): |
|
"""Runs on the current audio buffer. |
|
Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, ""). |
|
The non-emty text is confirmed (committed) partial transcript. |
|
""" |
|
|
|
prompt, non_prompt = self.prompt() |
|
print("PROMPT:", prompt, file=self.logfile) |
|
print("CONTEXT:", non_prompt, file=self.logfile) |
|
print(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}",file=self.logfile) |
|
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt) |
|
|
|
|
|
tsw = self.asr.ts_words(res) |
|
|
|
self.transcript_buffer.insert(tsw, self.buffer_time_offset) |
|
o = self.transcript_buffer.flush() |
|
self.commited.extend(o) |
|
print(">>>>COMPLETE NOW:",self.to_flush(o),file=self.logfile,flush=True) |
|
print("INCOMPLETE:",self.to_flush(self.transcript_buffer.complete()),file=self.logfile,flush=True) |
|
|
|
|
|
|
|
if o and self.buffer_trimming_way == "sentence": |
|
if len(self.audio_buffer)/self.SAMPLING_RATE > self.buffer_trimming_sec: |
|
self.chunk_completed_sentence() |
|
|
|
|
|
if self.buffer_trimming_way == "segment": |
|
s = self.buffer_trimming_sec |
|
else: |
|
s = 30 |
|
|
|
if len(self.audio_buffer)/self.SAMPLING_RATE > s: |
|
self.chunk_completed_segment(res) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"chunking segment",file=self.logfile) |
|
|
|
|
|
print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=self.logfile) |
|
return self.to_flush(o) |
|
|
|
def chunk_completed_sentence(self): |
|
if self.commited == []: return |
|
print(self.commited,file=self.logfile) |
|
sents = self.words_to_sentences(self.commited) |
|
for s in sents: |
|
print("\t\tSENT:",s,file=self.logfile) |
|
if len(sents) < 2: |
|
return |
|
while len(sents) > 2: |
|
sents.pop(0) |
|
|
|
chunk_at = sents[-2][1] |
|
|
|
print(f"--- sentence chunked at {chunk_at:2.2f}",file=self.logfile) |
|
self.chunk_at(chunk_at) |
|
|
|
def chunk_completed_segment(self, res): |
|
if self.commited == []: return |
|
|
|
ends = self.asr.segments_end_ts(res) |
|
|
|
t = self.commited[-1][1] |
|
|
|
if len(ends) > 1: |
|
|
|
e = ends[-2]+self.buffer_time_offset |
|
while len(ends) > 2 and e > t: |
|
ends.pop(-1) |
|
e = ends[-2]+self.buffer_time_offset |
|
if e <= t: |
|
print(f"--- segment chunked at {e:2.2f}",file=self.logfile) |
|
self.chunk_at(e) |
|
else: |
|
print(f"--- last segment not within commited area",file=self.logfile) |
|
else: |
|
print(f"--- not enough segments to chunk",file=self.logfile) |
|
|
|
|
|
|
|
|
|
|
|
def chunk_at(self, time): |
|
"""trims the hypothesis and audio buffer at "time" |
|
""" |
|
self.transcript_buffer.pop_commited(time) |
|
cut_seconds = time - self.buffer_time_offset |
|
self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):] |
|
self.buffer_time_offset = time |
|
self.last_chunked_at = time |
|
|
|
def words_to_sentences(self, words): |
|
"""Uses self.tokenizer for sentence segmentation of words. |
|
Returns: [(beg,end,"sentence 1"),...] |
|
""" |
|
|
|
cwords = [w for w in words] |
|
t = " ".join(o[2] for o in cwords) |
|
s = self.tokenizer.split(t) |
|
out = [] |
|
while s: |
|
beg = None |
|
end = None |
|
sent = s.pop(0).strip() |
|
fsent = sent |
|
while cwords: |
|
b,e,w = cwords.pop(0) |
|
w = w.strip() |
|
if beg is None and sent.startswith(w): |
|
beg = b |
|
elif end is None and sent == w: |
|
end = e |
|
out.append((beg,end,fsent)) |
|
break |
|
sent = sent[len(w):].strip() |
|
return out |
|
|
|
def finish(self): |
|
"""Flush the incomplete text when the whole processing ends. |
|
Returns: the same format as self.process_iter() |
|
""" |
|
o = self.transcript_buffer.complete() |
|
f = self.to_flush(o) |
|
print("last, noncommited:",f,file=self.logfile) |
|
self.buffer_time_offset += len(self.audio_buffer)/16000 |
|
return f |
|
|
|
|
|
def to_flush(self, sents, sep=None, offset=0, ): |
|
|
|
|
|
|
|
if sep is None: |
|
sep = self.asr.sep |
|
t = sep.join(s[2] for s in sents) |
|
if len(sents) == 0: |
|
b = None |
|
e = None |
|
else: |
|
b = offset + sents[0][0] |
|
e = offset + sents[-1][1] |
|
return (b,e,t) |
|
|
|
WHISPER_LANG_CODES = "af,am,ar,as,az,ba,be,bg,bn,bo,br,bs,ca,cs,cy,da,de,el,en,es,et,eu,fa,fi,fo,fr,gl,gu,ha,haw,he,hi,hr,ht,hu,hy,id,is,it,ja,jw,ka,kk,km,kn,ko,la,lb,ln,lo,lt,lv,mg,mi,mk,ml,mn,mr,ms,mt,my,ne,nl,nn,no,oc,pa,pl,ps,pt,ro,ru,sa,sd,si,sk,sl,sn,so,sq,sr,su,sv,sw,ta,te,tg,th,tk,tl,tr,tt,uk,ur,uz,vi,yi,yo,zh".split(",") |
|
|
|
def create_tokenizer(lan): |
|
"""returns an object that has split function that works like the one of MosesTokenizer""" |
|
|
|
assert lan in WHISPER_LANG_CODES, "language must be Whisper's supported lang code: " + " ".join(WHISPER_LANG_CODES) |
|
|
|
if lan == "uk": |
|
import tokenize_uk |
|
class UkrainianTokenizer: |
|
def split(self, text): |
|
return tokenize_uk.tokenize_sents(text) |
|
return UkrainianTokenizer() |
|
|
|
|
|
if lan in "as bn ca cs de el en es et fi fr ga gu hi hu is it kn lt lv ml mni mr nl or pa pl pt ro ru sk sl sv ta te yue zh".split(): |
|
from mosestokenizer import MosesTokenizer |
|
return MosesTokenizer(lan) |
|
|
|
|
|
if lan in "as ba bo br bs fo haw hr ht jw lb ln lo mi nn oc sa sd sn so su sw tk tl tt".split(): |
|
print(f"{lan} code is not supported by wtpsplit. Going to use None lang_code option.", file=sys.stderr) |
|
lan = None |
|
|
|
from wtpsplit import WtP |
|
|
|
wtp = WtP("wtp-canine-s-12l-no-adapters") |
|
class WtPtok: |
|
def split(self, sent): |
|
return wtp.split(sent, lang_code=lan) |
|
return WtPtok() |
|
|
|
|
|
def add_shared_args(parser): |
|
"""shared args for simulation (this entry point) and server |
|
parser: argparse.ArgumentParser object |
|
""" |
|
parser.add_argument('--min-chunk-size', type=float, default=1.0, help='Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.') |
|
parser.add_argument('--model', type=str, default='large-v2', choices="tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large-v3,large".split(","),help="Name size of the Whisper model to use (default: large-v2). The model is automatically downloaded from the model hub if not present in model cache dir.") |
|
parser.add_argument('--model_cache_dir', type=str, default=None, help="Overriding the default model cache dir where models downloaded from the hub are saved") |
|
parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.") |
|
parser.add_argument('--lan', '--language', type=str, default='en', help="Source language code, e.g. en,de,cs, or 'auto' for language detection.") |
|
parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.") |
|
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.') |
|
parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.') |
|
parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.') |
|
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.') |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
import argparse |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.") |
|
add_shared_args(parser) |
|
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.') |
|
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.') |
|
parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.') |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
logfile = sys.stderr |
|
|
|
if args.offline and args.comp_unaware: |
|
print("No or one option from --offline and --comp_unaware are available, not both. Exiting.",file=logfile) |
|
sys.exit(1) |
|
|
|
audio_path = args.audio_path |
|
|
|
SAMPLING_RATE = 16000 |
|
duration = len(load_audio(audio_path))/SAMPLING_RATE |
|
print("Audio duration is: %2.2f seconds" % duration, file=logfile) |
|
|
|
size = args.model |
|
language = args.lan |
|
|
|
t = time.time() |
|
print(f"Loading Whisper {size} model for {language}...",file=logfile,end=" ",flush=True) |
|
|
|
if args.backend == "faster-whisper": |
|
asr_cls = FasterWhisperASR |
|
else: |
|
asr_cls = WhisperTimestampedASR |
|
|
|
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir) |
|
|
|
if args.task == "translate": |
|
asr.set_translate_task() |
|
tgt_language = "en" |
|
else: |
|
tgt_language = language |
|
|
|
|
|
e = time.time() |
|
print(f"done. It took {round(e-t,2)} seconds.",file=logfile) |
|
|
|
if args.vad: |
|
print("setting VAD filter",file=logfile) |
|
asr.use_vad() |
|
|
|
|
|
min_chunk = args.min_chunk_size |
|
if args.buffer_trimming == "sentence": |
|
tokenizer = create_tokenizer(tgt_language) |
|
else: |
|
tokenizer = None |
|
online = OnlineASRProcessor(asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec)) |
|
|
|
|
|
|
|
a = load_audio_chunk(audio_path,0,1) |
|
|
|
|
|
asr.transcribe(a) |
|
|
|
beg = args.start_at |
|
start = time.time()-beg |
|
|
|
def output_transcript(o, now=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
if now is None: |
|
now = time.time()-start |
|
if o[0] is not None: |
|
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),file=logfile,flush=True) |
|
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True) |
|
else: |
|
print(o,file=logfile,flush=True) |
|
|
|
if args.offline: |
|
a = load_audio(audio_path) |
|
online.insert_audio_chunk(a) |
|
try: |
|
o = online.process_iter() |
|
except AssertionError: |
|
print("assertion error",file=logfile) |
|
pass |
|
else: |
|
output_transcript(o) |
|
now = None |
|
elif args.comp_unaware: |
|
end = beg + min_chunk |
|
while True: |
|
a = load_audio_chunk(audio_path,beg,end) |
|
online.insert_audio_chunk(a) |
|
try: |
|
o = online.process_iter() |
|
except AssertionError: |
|
print("assertion error",file=logfile) |
|
pass |
|
else: |
|
output_transcript(o, now=end) |
|
|
|
print(f"## last processed {end:.2f}s",file=logfile,flush=True) |
|
|
|
if end >= duration: |
|
break |
|
|
|
beg = end |
|
|
|
if end + min_chunk > duration: |
|
end = duration |
|
else: |
|
end += min_chunk |
|
now = duration |
|
|
|
else: |
|
end = 0 |
|
while True: |
|
now = time.time() - start |
|
if now < end+min_chunk: |
|
time.sleep(min_chunk+end-now) |
|
end = time.time() - start |
|
a = load_audio_chunk(audio_path,beg,end) |
|
beg = end |
|
online.insert_audio_chunk(a) |
|
|
|
try: |
|
o = online.process_iter() |
|
except AssertionError: |
|
print("assertion error",file=logfile) |
|
pass |
|
else: |
|
output_transcript(o) |
|
now = time.time() - start |
|
print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=logfile,flush=True) |
|
|
|
if end >= duration: |
|
break |
|
now = None |
|
|
|
o = online.finish() |
|
output_transcript(o, now=now) |
|
|