WhisperLiveKitDiarization / voice_activity_controller.py
rockdrigo's picture
delete unused var
3fad813
raw
history blame
3.88 kB
import torch
import numpy as np
# import sounddevice as sd
import torch
import numpy as np
class VoiceActivityController:
def __init__(
self,
sampling_rate = 16000,
second_ofSilence = 0.5,
second_ofSpeech = 0.25,
use_vad_result = True,
activity_detected_callback=None,
):
self.activity_detected_callback=activity_detected_callback
self.model, self.utils = torch.hub.load(
repo_or_dir='snakers4/silero-vad',
model='silero_vad'
)
(self.get_speech_timestamps,
save_audio,
read_audio,
VADIterator,
collect_chunks) = self.utils
self.sampling_rate = sampling_rate
self.silence_limit = second_ofSilence * self.sampling_rate
self.speech_limit = second_ofSpeech *self.sampling_rate
self.use_vad_result = use_vad_result
self.vad_iterator = VADIterator(
model =self.model,
threshold = 0.3, # 0.5
sampling_rate= self.sampling_rate,
min_silence_duration_ms = 500, #100
speech_pad_ms = 400 #30
)
self.last_marked_chunk = None
def int2float(self, sound):
abs_max = np.abs(sound).max()
sound = sound.astype('float32')
if abs_max > 0:
sound *= 1/32768
sound = sound.squeeze() # depends on the use case
return sound
def apply_vad(self, audio):
audio_float32 = self.int2float(audio)
chunk = self.vad_iterator(audio_float32, return_seconds=False)
if chunk is not None:
if "start" in chunk:
start = chunk["start"]
self.last_marked_chunk = chunk
return audio[start:] if self.use_vad_result else audio, (len(audio) - start), 0
if "end" in chunk:
#todo: pending get the padding from the next chunk
end = chunk["end"] if chunk["end"] < len(audio) else len(audio)
self.last_marked_chunk = chunk
return audio[:end] if self.use_vad_result else audio, end ,len(audio) - end
if self.last_marked_chunk is not None:
if "start" in self.last_marked_chunk:
return audio, len(audio) ,0
if "end" in self.last_marked_chunk:
return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0 ,len(audio)
return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0 , 0
def detect_user_speech(self, audio_stream, audio_in_int16 = False):
silence_len= 0
speech_len = 0
for data in audio_stream: # replace with your condition of choice
# if isinstance(data, EndOfTransmission):
# raise EndOfTransmission("End of transmission detected")
audio_block = np.frombuffer(data, dtype=np.int16) if not audio_in_int16 else data
wav = audio_block
is_final = False
voice_audio, speech_in_wav, last_silent_duration_in_wav = self.apply_vad(wav)
# print(f'----r> speech_in_wav: {speech_in_wav} last_silent_duration_in_wav: {last_silent_duration_in_wav}')
if speech_in_wav > 0 :
silence_len= 0
speech_len += speech_in_wav
if self.activity_detected_callback is not None:
self.activity_detected_callback()
silence_len = silence_len + last_silent_duration_in_wav
if silence_len>= self.silence_limit and speech_len >= self.speech_limit:
is_final = True
silence_len= 0
speech_len = 0
yield voice_audio.tobytes(), is_final