|
import torch |
|
import numpy as np |
|
|
|
import torch |
|
import numpy as np |
|
|
|
|
|
class VoiceActivityController: |
|
def __init__( |
|
self, |
|
sampling_rate = 16000, |
|
second_ofSilence = 0.5, |
|
second_ofSpeech = 0.25, |
|
use_vad_result = True, |
|
activity_detected_callback=None, |
|
): |
|
self.activity_detected_callback=activity_detected_callback |
|
self.model, self.utils = torch.hub.load( |
|
repo_or_dir='snakers4/silero-vad', |
|
model='silero_vad' |
|
) |
|
(self.get_speech_timestamps, |
|
save_audio, |
|
read_audio, |
|
VADIterator, |
|
collect_chunks) = self.utils |
|
|
|
self.sampling_rate = sampling_rate |
|
self.silence_limit = second_ofSilence * self.sampling_rate |
|
self.speech_limit = second_ofSpeech *self.sampling_rate |
|
|
|
self.use_vad_result = use_vad_result |
|
self.vad_iterator = VADIterator( |
|
model =self.model, |
|
threshold = 0.3, |
|
sampling_rate= self.sampling_rate, |
|
min_silence_duration_ms = 500, |
|
speech_pad_ms = 400 |
|
) |
|
self.last_marked_chunk = None |
|
|
|
|
|
def int2float(self, sound): |
|
abs_max = np.abs(sound).max() |
|
sound = sound.astype('float32') |
|
if abs_max > 0: |
|
sound *= 1/32768 |
|
sound = sound.squeeze() |
|
return sound |
|
|
|
def apply_vad(self, audio): |
|
audio_float32 = self.int2float(audio) |
|
chunk = self.vad_iterator(audio_float32, return_seconds=False) |
|
|
|
if chunk is not None: |
|
if "start" in chunk: |
|
start = chunk["start"] |
|
self.last_marked_chunk = chunk |
|
return audio[start:] if self.use_vad_result else audio, (len(audio) - start), 0 |
|
|
|
if "end" in chunk: |
|
|
|
end = chunk["end"] if chunk["end"] < len(audio) else len(audio) |
|
self.last_marked_chunk = chunk |
|
return audio[:end] if self.use_vad_result else audio, end ,len(audio) - end |
|
|
|
if self.last_marked_chunk is not None: |
|
if "start" in self.last_marked_chunk: |
|
return audio, len(audio) ,0 |
|
|
|
if "end" in self.last_marked_chunk: |
|
return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0 ,len(audio) |
|
|
|
return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0 , 0 |
|
|
|
|
|
|
|
def detect_user_speech(self, audio_stream, audio_in_int16 = False): |
|
silence_len= 0 |
|
speech_len = 0 |
|
|
|
for data in audio_stream: |
|
|
|
|
|
|
|
|
|
audio_block = np.frombuffer(data, dtype=np.int16) if not audio_in_int16 else data |
|
wav = audio_block |
|
|
|
|
|
is_final = False |
|
voice_audio, speech_in_wav, last_silent_duration_in_wav = self.apply_vad(wav) |
|
|
|
|
|
if speech_in_wav > 0 : |
|
silence_len= 0 |
|
speech_len += speech_in_wav |
|
if self.activity_detected_callback is not None: |
|
self.activity_detected_callback() |
|
|
|
silence_len = silence_len + last_silent_duration_in_wav |
|
if silence_len>= self.silence_limit and speech_len >= self.speech_limit: |
|
is_final = True |
|
silence_len= 0 |
|
speech_len = 0 |
|
|
|
|
|
yield voice_audio.tobytes(), is_final |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|