|
import io |
|
import argparse |
|
import asyncio |
|
import numpy as np |
|
import ffmpeg |
|
|
|
from fastapi import FastAPI, WebSocket, WebSocketDisconnect |
|
from fastapi.responses import HTMLResponse |
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
|
from whisper_online import asr_factory, add_shared_args |
|
|
|
app = FastAPI() |
|
app.add_middleware( |
|
CORSMiddleware, |
|
allow_origins=["*"], |
|
allow_credentials=True, |
|
allow_methods=["*"], |
|
allow_headers=["*"], |
|
) |
|
|
|
|
|
parser = argparse.ArgumentParser(description="Whisper FastAPI Online Server") |
|
parser.add_argument("--host", type=str, default='localhost', help="The host address to bind the server to.") |
|
parser.add_argument("--port", type=int, default=8000, help="The port number to bind the server to.") |
|
parser.add_argument("--warmup-file", type=str, dest="warmup_file", |
|
help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .") |
|
add_shared_args(parser) |
|
args = parser.parse_args() |
|
|
|
asr, online = asr_factory(args) |
|
|
|
|
|
with open("src/live_transcription.html", "r") as f: |
|
html = f.read() |
|
|
|
@app.get("/") |
|
async def get(): |
|
return HTMLResponse(html) |
|
|
|
SAMPLE_RATE = 16000 |
|
CHANNELS = 1 |
|
SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size) |
|
BYTES_PER_SAMPLE = 2 |
|
BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE |
|
|
|
async def start_ffmpeg_decoder(): |
|
""" |
|
Start an FFmpeg process in async streaming mode that reads WebM from stdin |
|
and outputs raw s16le PCM on stdout. Returns the process object. |
|
""" |
|
process = ( |
|
ffmpeg |
|
.input('pipe:0', format='webm') |
|
.output('pipe:1', format='s16le', acodec='pcm_s16le', ac=CHANNELS, ar=str(SAMPLE_RATE)) |
|
.run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True) |
|
) |
|
return process |
|
|
|
@app.websocket("/ws") |
|
async def websocket_endpoint(websocket: WebSocket): |
|
await websocket.accept() |
|
print("WebSocket connection opened.") |
|
|
|
ffmpeg_process = await start_ffmpeg_decoder() |
|
pcm_buffer = bytearray() |
|
|
|
async def ffmpeg_stdout_reader(): |
|
nonlocal pcm_buffer |
|
loop = asyncio.get_event_loop() |
|
full_transcription = "" |
|
while True: |
|
try: |
|
chunk = await loop.run_in_executor(None, ffmpeg_process.stdout.read, 4096) |
|
if not chunk: |
|
print("FFmpeg stdout closed.") |
|
break |
|
|
|
pcm_buffer.extend(chunk) |
|
|
|
while len(pcm_buffer) >= BYTES_PER_SEC: |
|
three_sec_chunk = pcm_buffer[:BYTES_PER_SEC] |
|
del pcm_buffer[:BYTES_PER_SEC] |
|
|
|
|
|
pcm_array = np.frombuffer(three_sec_chunk, dtype=np.int16).astype(np.float32) / 32768.0 |
|
|
|
online.insert_audio_chunk(pcm_array) |
|
transcription = online.process_iter()[2] |
|
if args.vac: |
|
buffer = online.online.to_flush(online.online.transcript_buffer.buffer)[2] |
|
else: |
|
buffer = online.to_flush(online.transcript_buffer.buffer)[2] |
|
if buffer in full_transcription: |
|
buffer = "" |
|
await websocket.send_json({ |
|
"transcription": transcription, |
|
"buffer": buffer |
|
}) |
|
except Exception as e: |
|
print(f"Exception in ffmpeg_stdout_reader: {e}") |
|
break |
|
|
|
print("Exiting ffmpeg_stdout_reader...") |
|
|
|
stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader()) |
|
|
|
try: |
|
while True: |
|
|
|
message = await websocket.receive_bytes() |
|
|
|
ffmpeg_process.stdin.write(message) |
|
ffmpeg_process.stdin.flush() |
|
|
|
except WebSocketDisconnect: |
|
print("WebSocket connection closed.") |
|
except Exception as e: |
|
print(f"Error in websocket loop: {e}") |
|
finally: |
|
|
|
try: |
|
ffmpeg_process.stdin.close() |
|
except: |
|
pass |
|
stdout_reader_task.cancel() |
|
|
|
try: |
|
ffmpeg_process.stdout.close() |
|
except: |
|
pass |
|
|
|
ffmpeg_process.wait() |
|
|
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
uvicorn.run("whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True) |