qfuxa commited on
Commit
104f7bd
·
1 Parent(s): e6648e4

add fastapi server with live webm to pcm conversion and web page showing both complete transcription and partial transcription

Browse files
README.md CHANGED
@@ -208,6 +208,51 @@ arecord -f S16_LE -c1 -r 16000 -t raw -D default | nc localhost 43001
208
 
209
  - nc is netcat with server's host and port
210
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211
 
212
  ## Background
213
 
 
208
 
209
  - nc is netcat with server's host and port
210
 
211
+ ## Live Transcription Web Interface
212
+
213
+ This repository also includes a **FastAPI server** and an **HTML/JavaScript client** for quick testing of live speech transcription in the browser. The client uses native WebSockets and the `MediaRecorder` API to capture microphone audio in **WebM** format and send it to the server—**no additional front-end framework** is required.
214
+
215
+ ![Demo Screenshot](src/demo.png)
216
+
217
+ ### How to Launch the Server
218
+
219
+ 1. **Install Dependencies**:
220
+
221
+ ```bash
222
+ pip install -r requirements.txt
223
+ ```
224
+
225
+ 2. **Run the FastAPI Server**:
226
+
227
+ ```bash
228
+ python whisper_fastapi_online_server.py --host 0.0.0.0 --port 8000
229
+ ```
230
+
231
+ - `--host` and `--port` let you specify the server’s IP/port.
232
+
233
+ 3. **Open the Provided HTML**:
234
+
235
+ - By default, the server root endpoint `/` serves a simple `live_transcription.html` page.
236
+ - Open your browser at `http://localhost:8000` (or replace `localhost` and `8000` with whatever you specified).
237
+ - The page uses vanilla JavaScript and the WebSocket API to capture your microphone and stream audio to the server in real time.
238
+
239
+ ### How the Live Interface Works
240
+
241
+ - Once you **allow microphone access**, the page records small chunks of audio using the **MediaRecorder** API in **webm/opus** format.
242
+ - These chunks are sent over a **WebSocket** to the FastAPI endpoint at `/ws`.
243
+ - The Python server decodes `.webm` chunks on the fly using **FFmpeg** and streams them into **Whisper** for transcription.
244
+ - **Partial transcription** appears as soon as enough audio is processed. The “unvalidated” text is shown in **lighter or grey color** (i.e., an ‘aperçu’) to indicate it’s still buffered partial output. Once Whisper finalizes that segment, it’s displayed in normal text.
245
+ - You can watch the transcription update in near real time, ideal for demos, prototyping, or quick debugging.
246
+
247
+ ### Deploying to a Remote Server
248
+
249
+ If you want to **deploy** this setup:
250
+
251
+ 1. **Host the FastAPI app** behind a production-grade HTTP server (like **Uvicorn + Nginx** or Docker).
252
+ 2. The **HTML/JS page** can be served by the same FastAPI app or a separate static host.
253
+ 3. Users open the page in **Chrome/Firefox** (any modern browser that supports MediaRecorder + WebSocket).
254
+
255
+ No additional front-end libraries or frameworks are required. The WebSocket logic in `live_transcription.html` is minimal enough to adapt for your own custom UI or embed in other pages.
256
 
257
  ## Background
258
 
src/demo.png ADDED
src/live_transcription.html ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html lang="en">
3
+ <head>
4
+ <meta charset="UTF-8">
5
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
6
+ <title>Audio Transcription</title>
7
+ <style>
8
+ body {
9
+ font-family: 'Inter', sans-serif;
10
+ text-align: center;
11
+ margin: 20px;
12
+ }
13
+ #recordButton {
14
+ width: 80px;
15
+ height: 80px;
16
+ font-size: 36px;
17
+ border: none;
18
+ border-radius: 50%;
19
+ background-color: white;
20
+ cursor: pointer;
21
+ box-shadow: 0 0px 10px rgba(0, 0, 0, 0.2);
22
+ transition: background-color 0.3s ease, transform 0.2s ease;
23
+ }
24
+ #recordButton.recording {
25
+ background-color: #ff4d4d;
26
+ color: white;
27
+ }
28
+ #recordButton:active {
29
+ transform: scale(0.95);
30
+ }
31
+ #transcriptions {
32
+ margin-top: 20px;
33
+ font-size: 18px;
34
+ text-align: left;
35
+ }
36
+ .transcription {
37
+ display: inline;
38
+ color: black;
39
+ }
40
+ .buffer {
41
+ display: inline;
42
+ color: rgb(197, 197, 197);
43
+ }
44
+ </style>
45
+ </head>
46
+ <body>
47
+ <p id="status">Click to start transcription</p>
48
+ <button id="recordButton">🎙️</button>
49
+ <div id="transcriptions"></div>
50
+
51
+ <script>
52
+ let isRecording = false, websocket, recorder;
53
+
54
+ const statusText = document.getElementById("status");
55
+ const recordButton = document.getElementById("recordButton");
56
+ const transcriptionsDiv = document.getElementById("transcriptions");
57
+
58
+ let fullTranscription = ""; // Store confirmed transcription
59
+
60
+ function setupWebSocket() {
61
+ websocket = new WebSocket("ws://localhost:8000/ws");
62
+ websocket.onmessage = (event) => {
63
+ const data = JSON.parse(event.data);
64
+ const { transcription, buffer } = data;
65
+
66
+ // Update confirmed transcription
67
+ fullTranscription += transcription;
68
+
69
+ // Update the transcription display
70
+ transcriptionsDiv.innerHTML = `
71
+ <span class="transcription">${fullTranscription}</span>
72
+ <span class="buffer">${buffer}</span>
73
+ `;
74
+ };
75
+ }
76
+
77
+ async function startRecording() {
78
+ const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
79
+ recorder = new MediaRecorder(stream, { mimeType: "audio/webm" });
80
+ recorder.ondataavailable = (e) => websocket?.send(e.data);
81
+ recorder.start(3000);
82
+ isRecording = true;
83
+ updateUI();
84
+ }
85
+
86
+ function stopRecording() {
87
+ recorder?.stop();
88
+ recorder = null;
89
+ isRecording = false;
90
+ websocket?.close();
91
+ websocket = null;
92
+ updateUI();
93
+ }
94
+
95
+ async function toggleRecording() {
96
+ if (isRecording) stopRecording();
97
+ else {
98
+ setupWebSocket();
99
+ await startRecording();
100
+ }
101
+ }
102
+
103
+ function updateUI() {
104
+ recordButton.classList.toggle("recording", isRecording);
105
+ statusText.textContent = isRecording ? "Recording..." : "Click to start transcription";
106
+ }
107
+
108
+ recordButton.addEventListener("click", toggleRecording);
109
+ </script>
110
+ </body>
111
+ </html>
whisper_fastapi_online_server.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import argparse
3
+ import asyncio
4
+ import numpy as np
5
+ import ffmpeg
6
+
7
+ from fastapi import FastAPI, WebSocket, WebSocketDisconnect
8
+ from fastapi.responses import HTMLResponse
9
+ from fastapi.middleware.cors import CORSMiddleware
10
+
11
+ from whisper_online import asr_factory, add_shared_args
12
+
13
+ app = FastAPI()
14
+ app.add_middleware(
15
+ CORSMiddleware,
16
+ allow_origins=["*"],
17
+ allow_credentials=True,
18
+ allow_methods=["*"],
19
+ allow_headers=["*"],
20
+ )
21
+
22
+
23
+ # Argument parsing
24
+ parser = argparse.ArgumentParser()
25
+ parser.add_argument("--host", type=str, default='localhost')
26
+ parser.add_argument("--port", type=int, default=8000)
27
+ parser.add_argument("--warmup-file", type=str, dest="warmup_file",
28
+ help="The path to a speech audio wav file to warm up Whisper so that the very first chunk processing is fast. It can be e.g. https://github.com/ggerganov/whisper.cpp/raw/master/samples/jfk.wav .")
29
+ add_shared_args(parser)
30
+ args = parser.parse_args()
31
+
32
+ # Initialize Whisper
33
+ asr, online = asr_factory(args)
34
+
35
+ # Load demo HTML for the root endpoint
36
+ with open("live_transcription.html", "r") as f:
37
+ html = f.read()
38
+
39
+ @app.get("/")
40
+ async def get():
41
+ return HTMLResponse(html)
42
+
43
+ # Streaming constants
44
+ SAMPLE_RATE = 16000
45
+ CHANNELS = 1
46
+ SAMPLES_PER_SEC = SAMPLE_RATE * int(args.min_chunk_size)
47
+ BYTES_PER_SAMPLE = 2 # s16le = 2 bytes per sample
48
+ BYTES_PER_SEC = SAMPLES_PER_SEC * BYTES_PER_SAMPLE
49
+
50
+ async def start_ffmpeg_decoder():
51
+ """
52
+ Start an FFmpeg process in async streaming mode that reads WebM from stdin
53
+ and outputs raw s16le PCM on stdout. Returns the process object.
54
+ """
55
+ process = (
56
+ ffmpeg
57
+ .input('pipe:0', format='webm')
58
+ .output('pipe:1', format='s16le', acodec='pcm_s16le', ac=CHANNELS, ar=str(SAMPLE_RATE))
59
+ .run_async(pipe_stdin=True, pipe_stdout=True, pipe_stderr=True)
60
+ )
61
+ return process
62
+
63
+ @app.websocket("/ws")
64
+ async def websocket_endpoint(websocket: WebSocket):
65
+ await websocket.accept()
66
+ print("WebSocket connection opened.")
67
+
68
+ ffmpeg_process = await start_ffmpeg_decoder()
69
+ pcm_buffer = bytearray()
70
+
71
+ # Continuously read decoded PCM from ffmpeg stdout in a background task
72
+ async def ffmpeg_stdout_reader():
73
+ nonlocal pcm_buffer
74
+ loop = asyncio.get_event_loop()
75
+ while True:
76
+ try:
77
+ chunk = await loop.run_in_executor(None, ffmpeg_process.stdout.read, 4096)
78
+ if not chunk: # FFmpeg might have closed
79
+ print("FFmpeg stdout closed.")
80
+ break
81
+
82
+ pcm_buffer.extend(chunk)
83
+
84
+ # Process in 3-second batches
85
+ while len(pcm_buffer) >= BYTES_PER_SEC:
86
+ three_sec_chunk = pcm_buffer[:BYTES_PER_SEC]
87
+ del pcm_buffer[:BYTES_PER_SEC]
88
+
89
+ # Convert int16 -> float32
90
+ pcm_array = np.frombuffer(three_sec_chunk, dtype=np.int16).astype(np.float32) / 32768.0
91
+
92
+ # Send PCM data to Whisper
93
+ online.insert_audio_chunk(pcm_array)
94
+ transcription = online.process_iter()
95
+ buffer = online.to_flush(online.transcript_buffer.buffer)
96
+
97
+ # Return partial transcription results to the client
98
+ await websocket.send_json({
99
+ "transcription": transcription[2],
100
+ "buffer": buffer[2]
101
+ })
102
+ except Exception as e:
103
+ print(f"Exception in ffmpeg_stdout_reader: {e}")
104
+ break
105
+
106
+ print("Exiting ffmpeg_stdout_reader...")
107
+
108
+ stdout_reader_task = asyncio.create_task(ffmpeg_stdout_reader())
109
+
110
+ try:
111
+ while True:
112
+ # Receive incoming WebM audio chunks from the client
113
+ message = await websocket.receive_bytes()
114
+ # Pass them to ffmpeg via stdin
115
+ ffmpeg_process.stdin.write(message)
116
+ ffmpeg_process.stdin.flush()
117
+
118
+ except WebSocketDisconnect:
119
+ print("WebSocket connection closed.")
120
+ except Exception as e:
121
+ print(f"Error in websocket loop: {e}")
122
+ finally:
123
+ # Clean up ffmpeg and the reader task
124
+ try:
125
+ ffmpeg_process.stdin.close()
126
+ except:
127
+ pass
128
+ stdout_reader_task.cancel()
129
+
130
+ try:
131
+ ffmpeg_process.stdout.close()
132
+ except:
133
+ pass
134
+
135
+ ffmpeg_process.wait()
136
+
137
+
138
+ if __name__ == "__main__":
139
+ import uvicorn
140
+ uvicorn.run("whisper_fastapi_online_server:app", host=args.host, port=args.port, reload=True)