Dominik Macháček
commited on
Commit
·
2625be1
1
Parent(s):
260b1f8
Ukrainian tokenizer support
Browse files- whisper_online.py +17 -9
- whisper_online_server.py +4 -1
whisper_online.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
import librosa
|
5 |
from functools import lru_cache
|
6 |
import time
|
7 |
-
|
8 |
|
9 |
|
10 |
@lru_cache
|
@@ -207,14 +207,12 @@ class OnlineASRProcessor:
|
|
207 |
|
208 |
SAMPLING_RATE = 16000
|
209 |
|
210 |
-
def __init__(self,
|
211 |
-
"""
|
212 |
-
|
213 |
-
chunk: number of seconds for intended size of audio interval that is inserted and looped
|
214 |
"""
|
215 |
-
self.language = language
|
216 |
self.asr = asr
|
217 |
-
self.tokenizer =
|
218 |
|
219 |
self.init()
|
220 |
|
@@ -369,7 +367,7 @@ class OnlineASRProcessor:
|
|
369 |
self.last_chunked_at = time
|
370 |
|
371 |
def words_to_sentences(self, words):
|
372 |
-
"""Uses
|
373 |
Returns: [(beg,end,"sentence 1"),...]
|
374 |
"""
|
375 |
|
@@ -419,6 +417,15 @@ class OnlineASRProcessor:
|
|
419 |
return (b,e,t)
|
420 |
|
421 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
422 |
|
423 |
## main:
|
424 |
|
@@ -482,8 +489,9 @@ if __name__ == "__main__":
|
|
482 |
print("setting VAD filter",file=sys.stderr)
|
483 |
asr.use_vad()
|
484 |
|
|
|
485 |
min_chunk = args.min_chunk_size
|
486 |
-
online = OnlineASRProcessor(tgt_language
|
487 |
|
488 |
|
489 |
# load the audio into the LRU cache before we start the timer
|
|
|
4 |
import librosa
|
5 |
from functools import lru_cache
|
6 |
import time
|
7 |
+
|
8 |
|
9 |
|
10 |
@lru_cache
|
|
|
207 |
|
208 |
SAMPLING_RATE = 16000
|
209 |
|
210 |
+
def __init__(self, asr, tokenizer):
|
211 |
+
"""asr: WhisperASR object
|
212 |
+
tokenizer: sentence tokenizer object for the target language. Must have a method *split* that behaves like the one of MosesTokenizer.
|
|
|
213 |
"""
|
|
|
214 |
self.asr = asr
|
215 |
+
self.tokenizer = tokenizer
|
216 |
|
217 |
self.init()
|
218 |
|
|
|
367 |
self.last_chunked_at = time
|
368 |
|
369 |
def words_to_sentences(self, words):
|
370 |
+
"""Uses self.tokenizer for sentence segmentation of words.
|
371 |
Returns: [(beg,end,"sentence 1"),...]
|
372 |
"""
|
373 |
|
|
|
417 |
return (b,e,t)
|
418 |
|
419 |
|
420 |
+
def create_tokenizer(lan):
|
421 |
+
if lan == "uk":
|
422 |
+
import tokenize_uk
|
423 |
+
class UkrainianTokenizer:
|
424 |
+
def split(self, text):
|
425 |
+
return tokenize_uk.tokenize_sents(text)
|
426 |
+
return UkrainianTokenizer()
|
427 |
+
from mosestokenizer import MosesTokenizer
|
428 |
+
return MosesTokenizer(lan)
|
429 |
|
430 |
## main:
|
431 |
|
|
|
489 |
print("setting VAD filter",file=sys.stderr)
|
490 |
asr.use_vad()
|
491 |
|
492 |
+
|
493 |
min_chunk = args.min_chunk_size
|
494 |
+
online = OnlineASRProcessor(asr,create_tokenizer(tgt_language))
|
495 |
|
496 |
|
497 |
# load the audio into the LRU cache before we start the timer
|
whisper_online_server.py
CHANGED
@@ -48,6 +48,9 @@ asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, mode
|
|
48 |
|
49 |
if args.task == "translate":
|
50 |
asr.set_translate_task()
|
|
|
|
|
|
|
51 |
|
52 |
e = time.time()
|
53 |
print(f"done. It took {round(e-t,2)} seconds.",file=sys.stderr)
|
@@ -58,7 +61,7 @@ if args.vad:
|
|
58 |
|
59 |
|
60 |
min_chunk = args.min_chunk_size
|
61 |
-
online = OnlineASRProcessor(
|
62 |
|
63 |
|
64 |
|
|
|
48 |
|
49 |
if args.task == "translate":
|
50 |
asr.set_translate_task()
|
51 |
+
tgt_language = "en"
|
52 |
+
else:
|
53 |
+
tgt_language = language
|
54 |
|
55 |
e = time.time()
|
56 |
print(f"done. It took {round(e-t,2)} seconds.",file=sys.stderr)
|
|
|
61 |
|
62 |
|
63 |
min_chunk = args.min_chunk_size
|
64 |
+
online = OnlineASRProcessor(asr,create_tokenizer(tgt_language))
|
65 |
|
66 |
|
67 |
|