Dominik Macháček
commited on
Commit
·
37fc0f3
1
Parent(s):
2b5f14d
whisper online
Browse files- whisper_online.py +402 -0
whisper_online.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import sys
|
3 |
+
import numpy as np
|
4 |
+
import whisper
|
5 |
+
import whisper_timestamped
|
6 |
+
import librosa
|
7 |
+
from functools import lru_cache
|
8 |
+
import torch
|
9 |
+
import time
|
10 |
+
from mosestokenizer import MosesTokenizer
|
11 |
+
import json
|
12 |
+
|
13 |
+
|
14 |
+
@lru_cache
|
15 |
+
def load_audio(fname):
|
16 |
+
a, _ = librosa.load(fname, sr=16000)
|
17 |
+
return a
|
18 |
+
|
19 |
+
def load_audio_chunk(fname, beg, end):
|
20 |
+
audio = load_audio(fname)
|
21 |
+
beg_s = int(beg*16000)
|
22 |
+
end_s = int(end*16000)
|
23 |
+
return audio[beg_s:end_s]
|
24 |
+
|
25 |
+
class WhisperASR:
|
26 |
+
def __init__(self, modelsize="small", lan="en", cache_dir="disk-cache-dir"):
|
27 |
+
self.original_language = lan
|
28 |
+
self.model = whisper.load_model(modelsize, download_root=cache_dir)
|
29 |
+
|
30 |
+
def transcribe(self, audio, init_prompt=""):
|
31 |
+
result = whisper_timestamped.transcribe_timestamped(self.model, audio, language=self.original_language, initial_prompt=init_prompt, verbose=None, condition_on_previous_text=True)
|
32 |
+
return result
|
33 |
+
|
34 |
+
def ts_words(self,r):
|
35 |
+
# return: transcribe result object to [(beg,end,"word1"), ...]
|
36 |
+
o = []
|
37 |
+
for s in r["segments"]:
|
38 |
+
for w in s["words"]:
|
39 |
+
t = (w["start"],w["end"],w["text"])
|
40 |
+
o.append(t)
|
41 |
+
return o
|
42 |
+
|
43 |
+
def to_flush(sents, offset=0):
|
44 |
+
# concatenates the timestamped words or sentences into one sequence that is flushed in one line
|
45 |
+
# sents: [(beg1, end1, "sentence1"), ...] or [] if empty
|
46 |
+
# return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
|
47 |
+
t = " ".join(s[2] for s in sents)
|
48 |
+
if len(sents) == 0:
|
49 |
+
b = None
|
50 |
+
e = None
|
51 |
+
else:
|
52 |
+
b = offset + sents[0][0]
|
53 |
+
e = offset + sents[-1][1]
|
54 |
+
return (b,e,t)
|
55 |
+
|
56 |
+
class HypothesisBuffer:
|
57 |
+
|
58 |
+
def __init__(self):
|
59 |
+
self.commited_in_buffer = []
|
60 |
+
self.buffer = []
|
61 |
+
self.new = []
|
62 |
+
|
63 |
+
self.last_commited_time = 0
|
64 |
+
self.last_commited_word = None
|
65 |
+
|
66 |
+
def insert(self, new, offset):
|
67 |
+
# compare self.commited_in_buffer and new. It inserts only the words in new that extend the commited_in_buffer, it means they are roughly behind last_commited_time and new in content
|
68 |
+
# the new tail is added to self.new
|
69 |
+
|
70 |
+
new = [(a+offset,b+offset,t) for a,b,t in new]
|
71 |
+
self.new = [(a,b,t) for a,b,t in new if a > self.last_commited_time-0.1]
|
72 |
+
|
73 |
+
if len(self.new) >= 1:
|
74 |
+
a,b,t = self.new[0]
|
75 |
+
if abs(a - self.last_commited_time) < 1:
|
76 |
+
if self.commited_in_buffer:
|
77 |
+
# it's going to search for 1, 2 or 3 consecutive words that are identical in commited and new. If they are, they're dropped.
|
78 |
+
cn = len(self.commited_in_buffer)
|
79 |
+
nn = len(self.new)
|
80 |
+
for i in range(1,min(min(cn,nn),5)+1):
|
81 |
+
c = " ".join([self.commited_in_buffer[-j][2] for j in range(1,i+1)][::-1])
|
82 |
+
tail = " ".join(self.new[j-1][2] for j in range(1,i+1))
|
83 |
+
if c == tail:
|
84 |
+
print("removing last",i,"words:",file=sys.stderr)
|
85 |
+
for j in range(i):
|
86 |
+
print("\t",self.new.pop(0),file=sys.stderr)
|
87 |
+
break
|
88 |
+
|
89 |
+
def flush(self):
|
90 |
+
# returns commited chunk = the longest common prefix of 2 last inserts.
|
91 |
+
|
92 |
+
commit = []
|
93 |
+
while self.new:
|
94 |
+
na, nb, nt = self.new[0]
|
95 |
+
|
96 |
+
if len(self.buffer) == 0:
|
97 |
+
break
|
98 |
+
|
99 |
+
if nt == self.buffer[0][2]:
|
100 |
+
commit.append((na,nb,nt))
|
101 |
+
self.last_commited_word = nt
|
102 |
+
self.last_commited_time = nb
|
103 |
+
self.buffer.pop(0)
|
104 |
+
self.new.pop(0)
|
105 |
+
else:
|
106 |
+
break
|
107 |
+
self.buffer = self.new
|
108 |
+
self.new = []
|
109 |
+
self.commited_in_buffer.extend(commit)
|
110 |
+
return commit
|
111 |
+
|
112 |
+
def pop_commited(self, time):
|
113 |
+
while self.commited_in_buffer and self.commited_in_buffer[0][1] <= time:
|
114 |
+
self.commited_in_buffer.pop(0)
|
115 |
+
|
116 |
+
def complete(self):
|
117 |
+
return self.buffer
|
118 |
+
|
119 |
+
class OnlineASRProcessor:
|
120 |
+
|
121 |
+
SAMPLING_RATE = 16000
|
122 |
+
|
123 |
+
def __init__(self, language, asr, chunk):
|
124 |
+
"""language: lang. code
|
125 |
+
asr: WhisperASR object
|
126 |
+
chunk: number of seconds for intended size of audio interval that is inserted and looped
|
127 |
+
"""
|
128 |
+
self.language = language
|
129 |
+
self.asr = asr
|
130 |
+
self.tokenizer = MosesTokenizer("en")
|
131 |
+
|
132 |
+
self.init()
|
133 |
+
|
134 |
+
self.chunk = chunk
|
135 |
+
|
136 |
+
|
137 |
+
def init(self):
|
138 |
+
"""run this when starting or restarting processing"""
|
139 |
+
self.audio_buffer = np.array([],dtype=np.float32)
|
140 |
+
self.buffer_time_offset = 0
|
141 |
+
|
142 |
+
self.transcript_buffer = HypothesisBuffer()
|
143 |
+
self.commited = []
|
144 |
+
self.last_chunked_at = 0
|
145 |
+
|
146 |
+
self.silence_iters = 0
|
147 |
+
|
148 |
+
def insert_audio_chunk(self, audio):
|
149 |
+
self.audio_buffer = np.append(self.audio_buffer, audio)
|
150 |
+
|
151 |
+
def prompt(self):
|
152 |
+
"""Returns a tuple: (prompt, context), where "prompt" is a 200-character suffix of commited text that is inside of the scrolled away part of audio buffer.
|
153 |
+
"context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
|
154 |
+
"""
|
155 |
+
k = max(0,len(self.commited)-1)
|
156 |
+
while k > 0 and self.commited[k-1][1] > self.last_chunked_at:
|
157 |
+
k -= 1
|
158 |
+
|
159 |
+
p = self.commited[:k]
|
160 |
+
p = [t for _,_,t in p]
|
161 |
+
prompt = []
|
162 |
+
l = 0
|
163 |
+
while p and l < 200: # 200 characters prompt size
|
164 |
+
x = p.pop(-1)
|
165 |
+
l += len(x)+1
|
166 |
+
prompt.append(x)
|
167 |
+
non_prompt = self.commited[k:]
|
168 |
+
return " ".join(prompt[::-1]), " ".join(t for _,_,t in non_prompt)
|
169 |
+
|
170 |
+
def process_iter(self):
|
171 |
+
"""Runs on the current audio buffer.
|
172 |
+
Returns: a tuple (beg_timestamp, end_timestamp, "text"), or (None, None, "").
|
173 |
+
The non-emty text is confirmed (commited) partial transcript.
|
174 |
+
"""
|
175 |
+
|
176 |
+
prompt, non_prompt = self.prompt()
|
177 |
+
print("PROMPT:", prompt, file=sys.stderr)
|
178 |
+
print("CONTEXT:", non_prompt, file=sys.stderr)
|
179 |
+
print(f"transcribing {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f} seconds from {self.buffer_time_offset:2.2f}",file=sys.stderr)
|
180 |
+
res = self.asr.transcribe(self.audio_buffer, init_prompt=prompt)
|
181 |
+
|
182 |
+
# transform to [(beg,end,"word1"), ...]
|
183 |
+
tsw = self.asr.ts_words(res)
|
184 |
+
|
185 |
+
self.transcript_buffer.insert(tsw, self.buffer_time_offset)
|
186 |
+
o = self.transcript_buffer.flush()
|
187 |
+
self.commited.extend(o)
|
188 |
+
print(">>>>COMPLETE NOW:",to_flush(o),file=sys.stderr,flush=True)
|
189 |
+
print("INCOMPLETE:",to_flush(self.transcript_buffer.complete()),file=sys.stderr,flush=True)
|
190 |
+
|
191 |
+
# there is a newly confirmed text
|
192 |
+
if o:
|
193 |
+
# we trim all the completed sentences from the audio buffer
|
194 |
+
self.chunk_completed_sentence()
|
195 |
+
|
196 |
+
# ...segments could be considered
|
197 |
+
#self.chunk_completed_segment(res)
|
198 |
+
|
199 |
+
#
|
200 |
+
# self.silence_iters = 0
|
201 |
+
|
202 |
+
# this was an attempt to trim silence/non-linguistic noise detected by the fact that Whisper doesn't transcribe anything for 3-times in a row.
|
203 |
+
# It seemed not working better, or needs to be debugged.
|
204 |
+
|
205 |
+
# elif self.transcript_buffer.complete():
|
206 |
+
# self.silence_iters = 0
|
207 |
+
# elif not self.transcript_buffer.complete():
|
208 |
+
# # print("NOT COMPLETE:",to_flush(self.transcript_buffer.complete()),file=sys.stderr,flush=True)
|
209 |
+
# self.silence_iters += 1
|
210 |
+
# if self.silence_iters >= 3:
|
211 |
+
# n = self.last_chunked_at
|
212 |
+
## self.chunk_completed_sentence()
|
213 |
+
## if n == self.last_chunked_at:
|
214 |
+
# self.chunk_at(self.last_chunked_at+self.chunk)
|
215 |
+
# print(f"\tCHUNK: 3-times silence! chunk_at {n}+{self.chunk}",file=sys.stderr)
|
216 |
+
## self.silence_iters = 0
|
217 |
+
|
218 |
+
|
219 |
+
# if the audio buffer is longer than 30s, trim it...
|
220 |
+
if len(self.audio_buffer)/self.SAMPLING_RATE > 30:
|
221 |
+
# ...on the last completed segment (labeled by Whisper)
|
222 |
+
self.chunk_completed_segment(res)
|
223 |
+
|
224 |
+
# alternative: on any word
|
225 |
+
#l = self.buffer_time_offset + len(self.audio_buffer)/self.SAMPLING_RATE - 10
|
226 |
+
# let's find commited word that is less
|
227 |
+
#k = len(self.commited)-1
|
228 |
+
#while k>0 and self.commited[k][1] > l:
|
229 |
+
# k -= 1
|
230 |
+
#t = self.commited[k][1]
|
231 |
+
print(f"chunking because of len",file=sys.stderr)
|
232 |
+
#self.chunk_at(t)
|
233 |
+
|
234 |
+
print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=sys.stderr)
|
235 |
+
return to_flush(o)
|
236 |
+
|
237 |
+
def chunk_completed_sentence(self):
|
238 |
+
if self.commited == []: return
|
239 |
+
print(self.commited,file=sys.stderr)
|
240 |
+
sents = self.words_to_sentences(self.commited)
|
241 |
+
for s in sents:
|
242 |
+
print("\t\tSENT:",s,file=sys.stderr)
|
243 |
+
if len(sents) < 2:
|
244 |
+
return
|
245 |
+
while len(sents) > 2:
|
246 |
+
sents.pop(0)
|
247 |
+
# we will continue with audio processing at this timestamp
|
248 |
+
chunk_at = sents[-2][1]
|
249 |
+
|
250 |
+
print(f"--- sentence chunked at {chunk_at:2.2f}",file=sys.stderr)
|
251 |
+
self.chunk_at(chunk_at)
|
252 |
+
|
253 |
+
def chunk_completed_segment(self, res):
|
254 |
+
if self.commited == []: return
|
255 |
+
|
256 |
+
ends = [s["end"] for s in res["segments"]]
|
257 |
+
|
258 |
+
t = self.commited[-1][1]
|
259 |
+
|
260 |
+
if len(ends) > 1:
|
261 |
+
|
262 |
+
e = ends[-2]+self.buffer_time_offset
|
263 |
+
while len(ends) > 2 and e > t:
|
264 |
+
ends.pop(-1)
|
265 |
+
e = ends[-2]+self.buffer_time_offset
|
266 |
+
if e <= t:
|
267 |
+
print(f"--- segment chunked at {e:2.2f}",file=sys.stderr)
|
268 |
+
self.chunk_at(e)
|
269 |
+
else:
|
270 |
+
print(f"--- last segment not within commited area",file=sys.stderr)
|
271 |
+
else:
|
272 |
+
print(f"--- not enough segments to chunk",file=sys.stderr)
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
|
278 |
+
def chunk_at(self, time):
|
279 |
+
"""trims the hypothesis and audio buffer at "time"
|
280 |
+
"""
|
281 |
+
self.transcript_buffer.pop_commited(time)
|
282 |
+
cut_seconds = time - self.buffer_time_offset
|
283 |
+
self.audio_buffer = self.audio_buffer[int(cut_seconds)*self.SAMPLING_RATE:]
|
284 |
+
self.buffer_time_offset = time
|
285 |
+
self.last_chunked_at = time
|
286 |
+
|
287 |
+
def words_to_sentences(self, words):
|
288 |
+
"""Uses mosestokenizer for sentence segmentation of words.
|
289 |
+
Returns: [(beg,end,"sentence 1"),...]
|
290 |
+
"""
|
291 |
+
|
292 |
+
cwords = [w for w in words]
|
293 |
+
t = " ".join(o[2] for o in cwords)
|
294 |
+
s = self.tokenizer.split(t)
|
295 |
+
out = []
|
296 |
+
while s:
|
297 |
+
beg = None
|
298 |
+
end = None
|
299 |
+
sent = s.pop(0).strip()
|
300 |
+
fsent = sent
|
301 |
+
while cwords:
|
302 |
+
b,e,w = cwords.pop(0)
|
303 |
+
if beg is None and sent.startswith(w):
|
304 |
+
beg = b
|
305 |
+
elif end is None and sent == w:
|
306 |
+
end = e
|
307 |
+
out.append((beg,end,fsent))
|
308 |
+
break
|
309 |
+
sent = sent[len(w):].strip()
|
310 |
+
return out
|
311 |
+
|
312 |
+
def finish(self):
|
313 |
+
"""Flush the incomplete text when the whole processing ends.
|
314 |
+
Returns: the same format as self.process_iter()
|
315 |
+
"""
|
316 |
+
o = self.transcript_buffer.complete()
|
317 |
+
f = to_flush(o)
|
318 |
+
print("last, noncommited:",f,file=sys.stderr)
|
319 |
+
return f
|
320 |
+
|
321 |
+
|
322 |
+
|
323 |
+
## main:
|
324 |
+
|
325 |
+
import argparse
|
326 |
+
parser = argparse.ArgumentParser()
|
327 |
+
parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.")
|
328 |
+
parser.add_argument('--min-chunk-size', type=float, default=1.0, help='Minimum audio chunk size in seconds. It waits up to this time to do processing. If the processing takes shorter time, it waits, otherwise it processes the whole segment that was received by this time.')
|
329 |
+
parser.add_argument('--model', type=str, default='large-v2', help="name of the Whisper model to use (default: large-v2, options: {tiny.en,tiny,base.en,base,small.en,small,medium.en,medium,large-v1,large-v2,large}")
|
330 |
+
parser.add_argument('--model_dir', type=str, default='disk-cache-dir', help="the path where Whisper models are saved (or downloaded to). Default: ./disk-cache-dir")
|
331 |
+
parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
|
332 |
+
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
|
333 |
+
args = parser.parse_args()
|
334 |
+
|
335 |
+
audio_path = args.audio_path
|
336 |
+
|
337 |
+
SAMPLING_RATE = 16000
|
338 |
+
duration = len(load_audio(audio_path))/SAMPLING_RATE
|
339 |
+
print("Audio duration is: %2.2f seconds" % duration, file=sys.stderr)
|
340 |
+
|
341 |
+
size = args.model
|
342 |
+
language = args.lan
|
343 |
+
|
344 |
+
t = time.time()
|
345 |
+
print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",flush=True)
|
346 |
+
asr = WhisperASR(lan=language, modelsize=size)
|
347 |
+
e = time.time()
|
348 |
+
print(f"done. It took {round(e-t,2)} seconds.",file=sys.stderr)
|
349 |
+
|
350 |
+
|
351 |
+
min_chunk = args.min_chunk_size
|
352 |
+
online = OnlineASRProcessor(language,asr,min_chunk)
|
353 |
+
|
354 |
+
|
355 |
+
# load the audio into the LRU cache before we start the timer
|
356 |
+
a = load_audio_chunk(audio_path,0,1)
|
357 |
+
|
358 |
+
# warm up the ASR, because the very first transcribe takes much more time than the other
|
359 |
+
asr.transcribe(a)
|
360 |
+
|
361 |
+
def output_transcript(o):
|
362 |
+
# output format in stdout is like:
|
363 |
+
# 4186.3606 0 1720 Takhle to je
|
364 |
+
# - the first three words are:
|
365 |
+
# - emission time from beginning of processing, in milliseconds
|
366 |
+
# - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
|
367 |
+
# - the next words: segment transcript
|
368 |
+
now = time.time()-start
|
369 |
+
if o[0] is not None:
|
370 |
+
print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
|
371 |
+
else:
|
372 |
+
print(o,file=sys.stderr,flush=True)
|
373 |
+
|
374 |
+
beg = args.start_at
|
375 |
+
end = 0
|
376 |
+
start = time.time()-beg
|
377 |
+
while True:
|
378 |
+
now = time.time() - start
|
379 |
+
if now < end+min_chunk:
|
380 |
+
time.sleep(min_chunk+end-now)
|
381 |
+
end = time.time() - start
|
382 |
+
a = load_audio_chunk(audio_path,beg,end)
|
383 |
+
beg = end
|
384 |
+
online.insert_audio_chunk(a)
|
385 |
+
|
386 |
+
try:
|
387 |
+
o = online.process_iter()
|
388 |
+
except AssertionError:
|
389 |
+
print("assertion error",file=sys.stderr)
|
390 |
+
pass
|
391 |
+
else:
|
392 |
+
output_transcript(o)
|
393 |
+
now = time.time() - start
|
394 |
+
print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=sys.stderr)
|
395 |
+
|
396 |
+
print(file=sys.stderr,flush=True)
|
397 |
+
|
398 |
+
if end >= duration:
|
399 |
+
break
|
400 |
+
|
401 |
+
o = online.finish()
|
402 |
+
output_transcript(o)
|