skripnik commited on
Commit
80eb0ba
·
1 Parent(s): 949304a

Removed duplicate variable self.last_chunked_at

Browse files

I tried to find the difference between self.last_chunked_at and self.buffer_time_offset, and it took me a while to understand that they are exactly the same. I think it's better to get rid of one of the duplicates to make the code more readable.

Files changed (1) hide show
  1. whisper_online.py +1 -3
whisper_online.py CHANGED
@@ -328,7 +328,6 @@ class OnlineASRProcessor:
328
 
329
  self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
330
  self.commited = []
331
- self.last_chunked_at = 0
332
 
333
  self.silence_iters = 0
334
 
@@ -340,7 +339,7 @@ class OnlineASRProcessor:
340
  "context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
341
  """
342
  k = max(0,len(self.commited)-1)
343
- while k > 0 and self.commited[k-1][1] > self.last_chunked_at:
344
  k -= 1
345
 
346
  p = self.commited[:k]
@@ -451,7 +450,6 @@ class OnlineASRProcessor:
451
  cut_seconds = time - self.buffer_time_offset
452
  self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):]
453
  self.buffer_time_offset = time
454
- self.last_chunked_at = time
455
 
456
  def words_to_sentences(self, words):
457
  """Uses self.tokenizer for sentence segmentation of words.
 
328
 
329
  self.transcript_buffer = HypothesisBuffer(logfile=self.logfile)
330
  self.commited = []
 
331
 
332
  self.silence_iters = 0
333
 
 
339
  "context" is the commited text that is inside the audio buffer. It is transcribed again and skipped. It is returned only for debugging and logging reasons.
340
  """
341
  k = max(0,len(self.commited)-1)
342
+ while k > 0 and self.commited[k-1][1] > self.buffer_time_offset:
343
  k -= 1
344
 
345
  p = self.commited[:k]
 
450
  cut_seconds = time - self.buffer_time_offset
451
  self.audio_buffer = self.audio_buffer[int(cut_seconds*self.SAMPLING_RATE):]
452
  self.buffer_time_offset = time
 
453
 
454
  def words_to_sentences(self, words):
455
  """Uses self.tokenizer for sentence segmentation of words.