Tijs Zwinkels
commited on
Commit
·
8896389
1
Parent(s):
5929a82
Fix crash when using openai-api with whisper_online_server
Browse files- whisper_online.py +32 -21
- whisper_online_server.py +1 -24
whisper_online.py
CHANGED
@@ -548,6 +548,37 @@ def add_shared_args(parser):
|
|
548 |
parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
|
549 |
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
|
550 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
551 |
## main:
|
552 |
|
553 |
if __name__ == "__main__":
|
@@ -575,28 +606,8 @@ if __name__ == "__main__":
|
|
575 |
duration = len(load_audio(audio_path))/SAMPLING_RATE
|
576 |
print("Audio duration is: %2.2f seconds" % duration, file=logfile)
|
577 |
|
|
|
578 |
language = args.lan
|
579 |
-
|
580 |
-
if args.backend == "openai-api":
|
581 |
-
print("Using OpenAI API.",file=logfile)
|
582 |
-
asr = OpenaiApiASR(lan=language)
|
583 |
-
else:
|
584 |
-
if args.backend == "faster-whisper":
|
585 |
-
asr_cls = FasterWhisperASR
|
586 |
-
else:
|
587 |
-
asr_cls = WhisperTimestampedASR
|
588 |
-
|
589 |
-
size = args.model
|
590 |
-
t = time.time()
|
591 |
-
print(f"Loading Whisper {size} model for {language}...",file=logfile,end=" ",flush=True)
|
592 |
-
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
|
593 |
-
e = time.time()
|
594 |
-
print(f"done. It took {round(e-t,2)} seconds.",file=logfile)
|
595 |
-
|
596 |
-
if args.vad:
|
597 |
-
print("setting VAD filter",file=logfile)
|
598 |
-
asr.use_vad()
|
599 |
-
|
600 |
if args.task == "translate":
|
601 |
asr.set_translate_task()
|
602 |
tgt_language = "en" # Whisper translates into English
|
|
|
548 |
parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
|
549 |
parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
|
550 |
|
551 |
+
def asr_factory(args, logfile=sys.stderr):
|
552 |
+
"""
|
553 |
+
Creates and configures an ASR instance based on the specified backend and arguments.
|
554 |
+
"""
|
555 |
+
backend = args.backend
|
556 |
+
if backend == "openai-api":
|
557 |
+
print("Using OpenAI API.", file=logfile)
|
558 |
+
asr = OpenaiApiASR(lan=args.lan)
|
559 |
+
else:
|
560 |
+
if backend == "faster-whisper":
|
561 |
+
from faster_whisper import FasterWhisperASR
|
562 |
+
asr_cls = FasterWhisperASR
|
563 |
+
else:
|
564 |
+
from whisper_timestamped import WhisperTimestampedASR
|
565 |
+
asr_cls = WhisperTimestampedASR
|
566 |
+
|
567 |
+
# Only for FasterWhisperASR and WhisperTimestampedASR
|
568 |
+
size = args.model
|
569 |
+
t = time.time()
|
570 |
+
print(f"Loading Whisper {size} model for {args.lan}...", file=logfile, end=" ", flush=True)
|
571 |
+
asr = asr_cls(modelsize=size, lan=args.lan, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
|
572 |
+
e = time.time()
|
573 |
+
print(f"done. It took {round(e-t,2)} seconds.", file=logfile)
|
574 |
+
|
575 |
+
# Apply common configurations
|
576 |
+
if getattr(args, 'vad', False): # Checks if VAD argument is present and True
|
577 |
+
print("Setting VAD filter", file=logfile)
|
578 |
+
asr.use_vad()
|
579 |
+
|
580 |
+
return asr
|
581 |
+
|
582 |
## main:
|
583 |
|
584 |
if __name__ == "__main__":
|
|
|
606 |
duration = len(load_audio(audio_path))/SAMPLING_RATE
|
607 |
print("Audio duration is: %2.2f seconds" % duration, file=logfile)
|
608 |
|
609 |
+
asr = asr_factory(args, logfile=logfile)
|
610 |
language = args.lan
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
611 |
if args.task == "translate":
|
612 |
asr.set_translate_task()
|
613 |
tgt_language = "en" # Whisper translates into English
|
whisper_online_server.py
CHANGED
@@ -24,36 +24,13 @@ SAMPLING_RATE = 16000
|
|
24 |
size = args.model
|
25 |
language = args.lan
|
26 |
|
27 |
-
|
28 |
-
print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",flush=True)
|
29 |
-
|
30 |
-
if args.backend == "faster-whisper":
|
31 |
-
from faster_whisper import WhisperModel
|
32 |
-
asr_cls = FasterWhisperASR
|
33 |
-
elif args.backend == "openai-api":
|
34 |
-
asr_cls = OpenaiApiASR
|
35 |
-
else:
|
36 |
-
import whisper
|
37 |
-
import whisper_timestamped
|
38 |
-
# from whisper_timestamped_model import WhisperTimestampedASR
|
39 |
-
asr_cls = WhisperTimestampedASR
|
40 |
-
|
41 |
-
asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)
|
42 |
-
|
43 |
if args.task == "translate":
|
44 |
asr.set_translate_task()
|
45 |
tgt_language = "en"
|
46 |
else:
|
47 |
tgt_language = language
|
48 |
|
49 |
-
e = time.time()
|
50 |
-
print(f"done. It took {round(e-t,2)} seconds.",file=sys.stderr)
|
51 |
-
|
52 |
-
if args.vad:
|
53 |
-
print("setting VAD filter",file=sys.stderr)
|
54 |
-
asr.use_vad()
|
55 |
-
|
56 |
-
|
57 |
min_chunk = args.min_chunk_size
|
58 |
|
59 |
if args.buffer_trimming == "sentence":
|
|
|
24 |
size = args.model
|
25 |
language = args.lan
|
26 |
|
27 |
+
asr = asr_factory(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
if args.task == "translate":
|
29 |
asr.set_translate_task()
|
30 |
tgt_language = "en"
|
31 |
else:
|
32 |
tgt_language = language
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
min_chunk = args.min_chunk_size
|
35 |
|
36 |
if args.buffer_trimming == "sentence":
|