Dominik Macháček
commited on
Commit
·
b1878ce
1
Parent(s):
8116b21
offline option
Browse files- whisper_online.py +54 -35
whisper_online.py
CHANGED
@@ -22,6 +22,8 @@ def load_audio_chunk(fname, beg, end):
|
|
22 |
|
23 |
class ASRBase:
|
24 |
|
|
|
|
|
25 |
def __init__(self, modelsize, lan, cache_dir):
|
26 |
self.original_language = lan
|
27 |
|
@@ -74,6 +76,8 @@ class FasterWhisperASR(ASRBase):
|
|
74 |
import faster_whisper
|
75 |
"""
|
76 |
|
|
|
|
|
77 |
def load_model(self, modelsize, cache_dir):
|
78 |
# cache_dir is not set, it seemed not working. Default ~/.cache/huggingface/hub is used.
|
79 |
|
@@ -98,8 +102,8 @@ class FasterWhisperASR(ASRBase):
|
|
98 |
o = []
|
99 |
for segment in segments:
|
100 |
for word in segment.words:
|
101 |
-
# stripping the spaces
|
102 |
-
w = word.word
|
103 |
t = (word.start, word.end, w)
|
104 |
o.append(t)
|
105 |
return o
|
@@ -109,19 +113,6 @@ class FasterWhisperASR(ASRBase):
|
|
109 |
|
110 |
|
111 |
|
112 |
-
def to_flush(sents, offset=0):
|
113 |
-
# concatenates the timestamped words or sentences into one sequence that is flushed in one line
|
114 |
-
# sents: [(beg1, end1, "sentence1"), ...] or [] if empty
|
115 |
-
# return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
|
116 |
-
t = " ".join(s[2] for s in sents)
|
117 |
-
if len(sents) == 0:
|
118 |
-
b = None
|
119 |
-
e = None
|
120 |
-
else:
|
121 |
-
b = offset + sents[0][0]
|
122 |
-
e = offset + sents[-1][1]
|
123 |
-
return (b,e,t)
|
124 |
-
|
125 |
class HypothesisBuffer:
|
126 |
|
127 |
def __init__(self):
|
@@ -254,8 +245,8 @@ class OnlineASRProcessor:
|
|
254 |
self.transcript_buffer.insert(tsw, self.buffer_time_offset)
|
255 |
o = self.transcript_buffer.flush()
|
256 |
self.commited.extend(o)
|
257 |
-
print(">>>>COMPLETE NOW:",to_flush(o),file=sys.stderr,flush=True)
|
258 |
-
print("INCOMPLETE:",to_flush(self.transcript_buffer.complete()),file=sys.stderr,flush=True)
|
259 |
|
260 |
# there is a newly confirmed text
|
261 |
if o:
|
@@ -301,7 +292,7 @@ class OnlineASRProcessor:
|
|
301 |
#self.chunk_at(t)
|
302 |
|
303 |
print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=sys.stderr)
|
304 |
-
return to_flush(o)
|
305 |
|
306 |
def chunk_completed_sentence(self):
|
307 |
if self.commited == []: return
|
@@ -383,11 +374,26 @@ class OnlineASRProcessor:
|
|
383 |
Returns: the same format as self.process_iter()
|
384 |
"""
|
385 |
o = self.transcript_buffer.complete()
|
386 |
-
f = to_flush(o)
|
387 |
print("last, noncommited:",f,file=sys.stderr)
|
388 |
return f
|
389 |
|
390 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
|
393 |
## main:
|
@@ -401,6 +407,7 @@ parser.add_argument('--model_dir', type=str, default='disk-cache-dir', help="the
|
|
401 |
parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
|
402 |
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
|
403 |
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.')
|
|
|
404 |
args = parser.parse_args()
|
405 |
|
406 |
audio_path = args.audio_path
|
@@ -440,6 +447,9 @@ a = load_audio_chunk(audio_path,0,1)
|
|
440 |
# warm up the ASR, because the very first transcribe takes much more time than the other
|
441 |
asr.transcribe(a)
|
442 |
|
|
|
|
|
|
|
443 |
def output_transcript(o):
|
444 |
# output format in stdout is like:
|
445 |
# 4186.3606 0 1720 Takhle to je
|
@@ -453,18 +463,9 @@ def output_transcript(o):
|
|
453 |
else:
|
454 |
print(o,file=sys.stderr,flush=True)
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
start = time.time()-beg
|
459 |
-
while True:
|
460 |
-
now = time.time() - start
|
461 |
-
if now < end+min_chunk:
|
462 |
-
time.sleep(min_chunk+end-now)
|
463 |
-
end = time.time() - start
|
464 |
-
a = load_audio_chunk(audio_path,beg,end)
|
465 |
-
beg = end
|
466 |
online.insert_audio_chunk(a)
|
467 |
-
|
468 |
try:
|
469 |
o = online.process_iter()
|
470 |
except AssertionError:
|
@@ -472,13 +473,31 @@ while True:
|
|
472 |
pass
|
473 |
else:
|
474 |
output_transcript(o)
|
475 |
-
|
476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
|
478 |
-
|
479 |
|
480 |
-
|
481 |
-
|
482 |
|
483 |
o = online.finish()
|
484 |
output_transcript(o)
|
|
|
22 |
|
23 |
class ASRBase:
|
24 |
|
25 |
+
sep = " "
|
26 |
+
|
27 |
def __init__(self, modelsize, lan, cache_dir):
|
28 |
self.original_language = lan
|
29 |
|
|
|
76 |
import faster_whisper
|
77 |
"""
|
78 |
|
79 |
+
sep = ""
|
80 |
+
|
81 |
def load_model(self, modelsize, cache_dir):
|
82 |
# cache_dir is not set, it seemed not working. Default ~/.cache/huggingface/hub is used.
|
83 |
|
|
|
102 |
o = []
|
103 |
for segment in segments:
|
104 |
for word in segment.words:
|
105 |
+
# not stripping the spaces -- should not be merged with them!
|
106 |
+
w = word.word
|
107 |
t = (word.start, word.end, w)
|
108 |
o.append(t)
|
109 |
return o
|
|
|
113 |
|
114 |
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
class HypothesisBuffer:
|
117 |
|
118 |
def __init__(self):
|
|
|
245 |
self.transcript_buffer.insert(tsw, self.buffer_time_offset)
|
246 |
o = self.transcript_buffer.flush()
|
247 |
self.commited.extend(o)
|
248 |
+
print(">>>>COMPLETE NOW:",self.to_flush(o),file=sys.stderr,flush=True)
|
249 |
+
print("INCOMPLETE:",self.to_flush(self.transcript_buffer.complete()),file=sys.stderr,flush=True)
|
250 |
|
251 |
# there is a newly confirmed text
|
252 |
if o:
|
|
|
292 |
#self.chunk_at(t)
|
293 |
|
294 |
print(f"len of buffer now: {len(self.audio_buffer)/self.SAMPLING_RATE:2.2f}",file=sys.stderr)
|
295 |
+
return self.to_flush(o)
|
296 |
|
297 |
def chunk_completed_sentence(self):
|
298 |
if self.commited == []: return
|
|
|
374 |
Returns: the same format as self.process_iter()
|
375 |
"""
|
376 |
o = self.transcript_buffer.complete()
|
377 |
+
f = self.to_flush(o)
|
378 |
print("last, noncommited:",f,file=sys.stderr)
|
379 |
return f
|
380 |
|
381 |
|
382 |
+
def to_flush(self, sents, sep=None, offset=0, ):
|
383 |
+
# concatenates the timestamped words or sentences into one sequence that is flushed in one line
|
384 |
+
# sents: [(beg1, end1, "sentence1"), ...] or [] if empty
|
385 |
+
# return: (beg1,end-of-last-sentence,"concatenation of sentences") or (None, None, "") if empty
|
386 |
+
if sep is None:
|
387 |
+
sep = self.asr.sep
|
388 |
+
t = sep.join(s[2] for s in sents)
|
389 |
+
if len(sents) == 0:
|
390 |
+
b = None
|
391 |
+
e = None
|
392 |
+
else:
|
393 |
+
b = offset + sents[0][0]
|
394 |
+
e = offset + sents[-1][1]
|
395 |
+
return (b,e,t)
|
396 |
+
|
397 |
|
398 |
|
399 |
## main:
|
|
|
407 |
parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
|
408 |
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
|
409 |
parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.')
|
410 |
+
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
|
411 |
args = parser.parse_args()
|
412 |
|
413 |
audio_path = args.audio_path
|
|
|
447 |
# warm up the ASR, because the very first transcribe takes much more time than the other
|
448 |
asr.transcribe(a)
|
449 |
|
450 |
+
beg = args.start_at
|
451 |
+
start = time.time()-beg
|
452 |
+
|
453 |
def output_transcript(o):
|
454 |
# output format in stdout is like:
|
455 |
# 4186.3606 0 1720 Takhle to je
|
|
|
463 |
else:
|
464 |
print(o,file=sys.stderr,flush=True)
|
465 |
|
466 |
+
if args.offline: ## offline mode processing (for testing/debugging)
|
467 |
+
a = load_audio(audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
468 |
online.insert_audio_chunk(a)
|
|
|
469 |
try:
|
470 |
o = online.process_iter()
|
471 |
except AssertionError:
|
|
|
473 |
pass
|
474 |
else:
|
475 |
output_transcript(o)
|
476 |
+
else: # online = simultaneous mode
|
477 |
+
end = 0
|
478 |
+
while True:
|
479 |
+
now = time.time() - start
|
480 |
+
if now < end+min_chunk:
|
481 |
+
time.sleep(min_chunk+end-now)
|
482 |
+
end = time.time() - start
|
483 |
+
a = load_audio_chunk(audio_path,beg,end)
|
484 |
+
beg = end
|
485 |
+
online.insert_audio_chunk(a)
|
486 |
+
|
487 |
+
try:
|
488 |
+
o = online.process_iter()
|
489 |
+
except AssertionError:
|
490 |
+
print("assertion error",file=sys.stderr)
|
491 |
+
pass
|
492 |
+
else:
|
493 |
+
output_transcript(o)
|
494 |
+
now = time.time() - start
|
495 |
+
print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=sys.stderr)
|
496 |
|
497 |
+
print(file=sys.stderr,flush=True)
|
498 |
|
499 |
+
if end >= duration:
|
500 |
+
break
|
501 |
|
502 |
o = online.finish()
|
503 |
output_transcript(o)
|