Merge remote-tracking branch 'rodrigo/main' into vad-streaming
Browse files- mic_test_whisper_simple.py +95 -0
- mic_test_whisper_streaming.py +71 -0
- microphone_stream.py +82 -0
- voice_activity_controller.py +119 -0
- whisper_online.py +8 -1
mic_test_whisper_simple.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from microphone_stream import MicrophoneStream
|
2 |
+
from voice_activity_controller import VoiceActivityController
|
3 |
+
from whisper_online import *
|
4 |
+
import numpy as np
|
5 |
+
import librosa
|
6 |
+
import io
|
7 |
+
import soundfile
|
8 |
+
import sys
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
class SimpleASRProcessor:
|
14 |
+
|
15 |
+
def __init__(self, asr, sampling_rate = 16000):
|
16 |
+
"""run this when starting or restarting processing"""
|
17 |
+
self.audio_buffer = np.array([],dtype=np.float32)
|
18 |
+
self.prompt_buffer = ""
|
19 |
+
self.asr = asr
|
20 |
+
self.sampling_rate = sampling_rate
|
21 |
+
self.init_prompt = ''
|
22 |
+
|
23 |
+
def ts_words(self, segments):
|
24 |
+
result = ""
|
25 |
+
for segment in segments:
|
26 |
+
if segment.no_speech_prob > 0.9:
|
27 |
+
continue
|
28 |
+
for word in segment.words:
|
29 |
+
w = word.word
|
30 |
+
t = (word.start, word.end, w)
|
31 |
+
result +=w
|
32 |
+
return result
|
33 |
+
|
34 |
+
def stream_process(self, vad_result):
|
35 |
+
iter_in_phrase = 0
|
36 |
+
for chunk, is_final in vad_result:
|
37 |
+
iter_in_phrase += 1
|
38 |
+
|
39 |
+
if chunk is not None:
|
40 |
+
sf = soundfile.SoundFile(io.BytesIO(chunk), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
|
41 |
+
audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
|
42 |
+
out = []
|
43 |
+
out.append(audio)
|
44 |
+
a = np.concatenate(out)
|
45 |
+
self.audio_buffer = np.append(self.audio_buffer, a)
|
46 |
+
|
47 |
+
if is_final and len(self.audio_buffer) > 0:
|
48 |
+
res = self.asr.transcribe(self.audio_buffer, init_prompt=self.init_prompt)
|
49 |
+
tsw = self.ts_words(res)
|
50 |
+
|
51 |
+
self.init_prompt = self.init_prompt + tsw
|
52 |
+
self.init_prompt = self.init_prompt [-100:]
|
53 |
+
self.audio_buffer.resize(0)
|
54 |
+
iter_in_phrase =0
|
55 |
+
|
56 |
+
yield True, tsw
|
57 |
+
# show progress evry 50 chunks
|
58 |
+
elif iter_in_phrase % 50 == 0 and len(self.audio_buffer) > 0:
|
59 |
+
res = self.asr.transcribe(self.audio_buffer, init_prompt=self.init_prompt)
|
60 |
+
# use custom ts_words
|
61 |
+
tsw = self.ts_words(res)
|
62 |
+
yield False, tsw
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
SAMPLING_RATE = 16000
|
71 |
+
|
72 |
+
model = "large-v2"
|
73 |
+
src_lan = "en" # source language
|
74 |
+
tgt_lan = "en" # target language -- same as source for ASR, "en" if translate task is used
|
75 |
+
use_vad = False
|
76 |
+
min_sample_length = 1 * SAMPLING_RATE
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
vac = VoiceActivityController(use_vad_result = use_vad)
|
81 |
+
asr = FasterWhisperASR(src_lan, "large-v2") # loads and wraps Whisper model
|
82 |
+
|
83 |
+
tokenizer = create_tokenizer(tgt_lan)
|
84 |
+
online = SimpleASRProcessor(asr)
|
85 |
+
|
86 |
+
|
87 |
+
stream = MicrophoneStream()
|
88 |
+
stream = vac.detect_user_speech(stream, audio_in_int16 = False)
|
89 |
+
stream = online.stream_process(stream)
|
90 |
+
|
91 |
+
for isFinal, text in stream:
|
92 |
+
if isFinal:
|
93 |
+
print( text, end="\r\n")
|
94 |
+
else:
|
95 |
+
print( text, end="\r")
|
mic_test_whisper_streaming.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from microphone_stream import MicrophoneStream
|
2 |
+
from voice_activity_controller import VoiceActivityController
|
3 |
+
from whisper_online import *
|
4 |
+
import numpy as np
|
5 |
+
import librosa
|
6 |
+
import io
|
7 |
+
import soundfile
|
8 |
+
import sys
|
9 |
+
|
10 |
+
|
11 |
+
SAMPLING_RATE = 16000
|
12 |
+
model = "large-v2"
|
13 |
+
src_lan = "en" # source language
|
14 |
+
tgt_lan = "en" # target language -- same as source for ASR, "en" if translate task is used
|
15 |
+
use_vad_result = True
|
16 |
+
min_sample_length = 1 * SAMPLING_RATE
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
asr = FasterWhisperASR(src_lan, model) # loads and wraps Whisper model
|
21 |
+
tokenizer = create_tokenizer(tgt_lan) # sentence segmenter for the target language
|
22 |
+
online = OnlineASRProcessor(asr, tokenizer) # create processing object
|
23 |
+
|
24 |
+
microphone_stream = MicrophoneStream()
|
25 |
+
vad = VoiceActivityController(use_vad_result = use_vad_result)
|
26 |
+
|
27 |
+
complete_text = ''
|
28 |
+
final_processing_pending = False
|
29 |
+
out = []
|
30 |
+
out_len = 0
|
31 |
+
for iter in vad.detect_user_speech(microphone_stream): # processing loop:
|
32 |
+
raw_bytes= iter[0]
|
33 |
+
is_final = iter[1]
|
34 |
+
|
35 |
+
if raw_bytes:
|
36 |
+
sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
|
37 |
+
audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
|
38 |
+
out.append(audio)
|
39 |
+
out_len += len(audio)
|
40 |
+
|
41 |
+
|
42 |
+
if (is_final or out_len >= min_sample_length) and out_len>0:
|
43 |
+
a = np.concatenate(out)
|
44 |
+
online.insert_audio_chunk(a)
|
45 |
+
|
46 |
+
if out_len > min_sample_length:
|
47 |
+
o = online.process_iter()
|
48 |
+
print('-----'*10)
|
49 |
+
complete_text = complete_text + o[2]
|
50 |
+
print('PARTIAL - '+ complete_text) # do something with current partial output
|
51 |
+
print('-----'*10)
|
52 |
+
out = []
|
53 |
+
out_len = 0
|
54 |
+
|
55 |
+
if is_final:
|
56 |
+
o = online.finish()
|
57 |
+
# final_processing_pending = False
|
58 |
+
print('-----'*10)
|
59 |
+
complete_text = complete_text + o[2]
|
60 |
+
print('FINAL - '+ complete_text) # do something with current partial output
|
61 |
+
print('-----'*10)
|
62 |
+
online.init()
|
63 |
+
out = []
|
64 |
+
out_len = 0
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
microphone_stream.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
### mic stream
|
4 |
+
|
5 |
+
import queue
|
6 |
+
import re
|
7 |
+
import sys
|
8 |
+
import pyaudio
|
9 |
+
|
10 |
+
|
11 |
+
class MicrophoneStream:
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
sample_rate: int = 16000,
|
15 |
+
):
|
16 |
+
"""
|
17 |
+
Creates a stream of audio from the microphone.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
chunk_size: The size of each chunk of audio to read from the microphone.
|
21 |
+
channels: The number of channels to record audio from.
|
22 |
+
sample_rate: The sample rate to record audio at.
|
23 |
+
"""
|
24 |
+
try:
|
25 |
+
import pyaudio
|
26 |
+
except ImportError:
|
27 |
+
raise Exception('py audio not installed')
|
28 |
+
|
29 |
+
self._pyaudio = pyaudio.PyAudio()
|
30 |
+
self.sample_rate = sample_rate
|
31 |
+
|
32 |
+
self._chunk_size = int(self.sample_rate * 40 / 1000)
|
33 |
+
self._stream = self._pyaudio.open(
|
34 |
+
format=pyaudio.paInt16,
|
35 |
+
channels=1,
|
36 |
+
rate=sample_rate,
|
37 |
+
input=True,
|
38 |
+
frames_per_buffer=self._chunk_size,
|
39 |
+
)
|
40 |
+
|
41 |
+
self._open = True
|
42 |
+
|
43 |
+
def __iter__(self):
|
44 |
+
"""
|
45 |
+
Returns the iterator object.
|
46 |
+
"""
|
47 |
+
|
48 |
+
return self
|
49 |
+
|
50 |
+
def __next__(self):
|
51 |
+
"""
|
52 |
+
Reads a chunk of audio from the microphone.
|
53 |
+
"""
|
54 |
+
if not self._open:
|
55 |
+
raise StopIteration
|
56 |
+
|
57 |
+
try:
|
58 |
+
return self._stream.read(self._chunk_size)
|
59 |
+
except KeyboardInterrupt:
|
60 |
+
raise StopIteration
|
61 |
+
|
62 |
+
def close(self):
|
63 |
+
"""
|
64 |
+
Closes the stream.
|
65 |
+
"""
|
66 |
+
|
67 |
+
self._open = False
|
68 |
+
|
69 |
+
if self._stream.is_active():
|
70 |
+
self._stream.stop_stream()
|
71 |
+
|
72 |
+
self._stream.close()
|
73 |
+
self._pyaudio.terminate()
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
voice_activity_controller.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
# import sounddevice as sd
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import datetime
|
7 |
+
|
8 |
+
|
9 |
+
def int2float(sound):
|
10 |
+
abs_max = np.abs(sound).max()
|
11 |
+
sound = sound.astype('float32')
|
12 |
+
if abs_max > 0:
|
13 |
+
sound *= 1/32768
|
14 |
+
sound = sound.squeeze() # depends on the use case
|
15 |
+
return sound
|
16 |
+
|
17 |
+
class VoiceActivityController:
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
sampling_rate = 16000,
|
21 |
+
min_silence_to_final_ms = 500,
|
22 |
+
min_speech_to_final_ms = 100,
|
23 |
+
min_silence_duration_ms = 100,
|
24 |
+
use_vad_result = True,
|
25 |
+
activity_detected_callback=None,
|
26 |
+
threshold =0.3
|
27 |
+
):
|
28 |
+
self.activity_detected_callback=activity_detected_callback
|
29 |
+
self.model, self.utils = torch.hub.load(
|
30 |
+
repo_or_dir='snakers4/silero-vad',
|
31 |
+
model='silero_vad'
|
32 |
+
)
|
33 |
+
# (self.get_speech_timestamps,
|
34 |
+
# save_audio,
|
35 |
+
# read_audio,
|
36 |
+
# VADIterator,
|
37 |
+
# collect_chunks) = self.utils
|
38 |
+
|
39 |
+
self.sampling_rate = sampling_rate
|
40 |
+
self.final_silence_limit = min_silence_to_final_ms * self.sampling_rate / 1000
|
41 |
+
self.final_speech_limit = min_speech_to_final_ms *self.sampling_rate / 1000
|
42 |
+
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
43 |
+
|
44 |
+
self.use_vad_result = use_vad_result
|
45 |
+
self.last_marked_chunk = None
|
46 |
+
self.threshold = threshold
|
47 |
+
self.reset_states()
|
48 |
+
|
49 |
+
def reset_states(self):
|
50 |
+
self.model.reset_states()
|
51 |
+
self.temp_end = 0
|
52 |
+
self.current_sample = 0
|
53 |
+
|
54 |
+
def apply_vad(self, audio):
|
55 |
+
x = int2float(audio)
|
56 |
+
if not torch.is_tensor(x):
|
57 |
+
try:
|
58 |
+
x = torch.Tensor(x)
|
59 |
+
except:
|
60 |
+
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
61 |
+
|
62 |
+
speech_prob = self.model(x, self.sampling_rate).item()
|
63 |
+
|
64 |
+
window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
|
65 |
+
self.current_sample += window_size_samples
|
66 |
+
|
67 |
+
|
68 |
+
if (speech_prob >= self.threshold):
|
69 |
+
self.temp_end = 0
|
70 |
+
return audio, window_size_samples, 0
|
71 |
+
|
72 |
+
else :
|
73 |
+
if not self.temp_end:
|
74 |
+
self.temp_end = self.current_sample
|
75 |
+
|
76 |
+
if self.current_sample - self.temp_end < self.min_silence_samples:
|
77 |
+
return audio, 0, window_size_samples
|
78 |
+
else:
|
79 |
+
return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0, window_size_samples
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def detect_user_speech(self, audio_stream, audio_in_int16 = False):
|
86 |
+
last_silence_len= 0
|
87 |
+
speech_len = 0
|
88 |
+
|
89 |
+
for data in audio_stream: # replace with your condition of choice
|
90 |
+
|
91 |
+
|
92 |
+
audio_block = np.frombuffer(data, dtype=np.int16) if not audio_in_int16 else data
|
93 |
+
wav = audio_block
|
94 |
+
|
95 |
+
is_final = False
|
96 |
+
voice_audio, speech_in_wav, last_silent_in_wav = self.apply_vad(wav)
|
97 |
+
|
98 |
+
|
99 |
+
if speech_in_wav > 0 :
|
100 |
+
last_silence_len= 0
|
101 |
+
speech_len += speech_in_wav
|
102 |
+
if self.activity_detected_callback is not None:
|
103 |
+
self.activity_detected_callback()
|
104 |
+
|
105 |
+
last_silence_len += last_silent_in_wav
|
106 |
+
if last_silence_len>= self.final_silence_limit and speech_len >= self.final_speech_limit:
|
107 |
+
|
108 |
+
is_final = True
|
109 |
+
last_silence_len= 0
|
110 |
+
speech_len = 0
|
111 |
+
|
112 |
+
yield voice_audio.tobytes(), is_final
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
whisper_online.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
import librosa
|
5 |
from functools import lru_cache
|
6 |
import time
|
7 |
-
|
8 |
|
9 |
|
10 |
@lru_cache
|
@@ -118,14 +118,21 @@ class FasterWhisperASR(ASRBase):
|
|
118 |
return model
|
119 |
|
120 |
def transcribe(self, audio, init_prompt=""):
|
|
|
|
|
121 |
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
|
122 |
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
|
|
|
|
|
|
|
123 |
return list(segments)
|
124 |
|
125 |
def ts_words(self, segments):
|
126 |
o = []
|
127 |
for segment in segments:
|
128 |
for word in segment.words:
|
|
|
|
|
129 |
# not stripping the spaces -- should not be merged with them!
|
130 |
w = word.word
|
131 |
t = (word.start, word.end, w)
|
|
|
4 |
import librosa
|
5 |
from functools import lru_cache
|
6 |
import time
|
7 |
+
import datetime
|
8 |
|
9 |
|
10 |
@lru_cache
|
|
|
118 |
return model
|
119 |
|
120 |
def transcribe(self, audio, init_prompt=""):
|
121 |
+
|
122 |
+
# tiempo_inicio = datetime.datetime.now()
|
123 |
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
|
124 |
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
|
125 |
+
|
126 |
+
# print(f'({datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")})----------r> whisper transcribe take { (datetime.datetime.now() -tiempo_inicio) } ms.')
|
127 |
+
|
128 |
return list(segments)
|
129 |
|
130 |
def ts_words(self, segments):
|
131 |
o = []
|
132 |
for segment in segments:
|
133 |
for word in segment.words:
|
134 |
+
if segment.no_speech_prob > 0.9:
|
135 |
+
continue
|
136 |
# not stripping the spaces -- should not be merged with them!
|
137 |
w = word.word
|
138 |
t = (word.start, word.end, w)
|