Tijs Zwinkels commited on
Commit
c30969f
·
1 Parent(s): 1f2352f

OpenAI Whisper API backend

Browse files
Files changed (2) hide show
  1. whisper_online.py +75 -1
  2. whisper_online_server.py +2 -0
whisper_online.py CHANGED
@@ -4,6 +4,8 @@ import numpy as np
4
  import librosa
5
  from functools import lru_cache
6
  import time
 
 
7
 
8
 
9
 
@@ -142,6 +144,76 @@ class FasterWhisperASR(ASRBase):
142
  self.transcribe_kargs["task"] = "translate"
143
 
144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
  class HypothesisBuffer:
147
 
@@ -453,7 +525,7 @@ def add_shared_args(parser):
453
  parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
454
  parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
455
  parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
456
- parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.')
457
  parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
458
  parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
459
  parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
@@ -493,6 +565,8 @@ if __name__ == "__main__":
493
 
494
  if args.backend == "faster-whisper":
495
  asr_cls = FasterWhisperASR
 
 
496
  else:
497
  asr_cls = WhisperTimestampedASR
498
 
 
4
  import librosa
5
  from functools import lru_cache
6
  import time
7
+ import io
8
+ import soundfile as sf
9
 
10
 
11
 
 
144
  self.transcribe_kargs["task"] = "translate"
145
 
146
 
147
+ class OpenaiApiASR(ASRBase):
148
+ """Uses OpenAI's Whisper API for audio transcription."""
149
+
150
+ def __init__(self, modelsize=None, lan=None, cache_dir=None, model_dir=None, response_format="verbose_json", temperature=0):
151
+ self.modelname = "whisper-1" # modelsize is not used but kept for interface consistency
152
+ self.language = lan # ISO-639-1 language code
153
+ self.response_format = response_format
154
+ self.temperature = temperature
155
+ self.model = self.load_model(modelsize, cache_dir, model_dir)
156
+
157
+ def load_model(self, *args, **kwargs):
158
+ from openai import OpenAI
159
+ self.client = OpenAI()
160
+ # Since we're using the OpenAI API, there's no model to load locally.
161
+ print("Model configuration is set to use the OpenAI Whisper API.")
162
+
163
+ def ts_words(self, segments):
164
+ o = []
165
+ for segment in segments:
166
+ # Skip segments containing no speech
167
+ if segment["no_speech_prob"] > 0.8:
168
+ continue
169
+
170
+ # Splitting the text into words and filtering out empty strings
171
+ words = [word.strip() for word in segment["text"].split() if word.strip()]
172
+
173
+ if not words:
174
+ continue
175
+
176
+ # Assign start and end times for each word
177
+ # We only have timestamps per segment, so interpolating start and end-times
178
+ # assuming equal duration per word
179
+ segment_duration = segment["end"] - segment["start"]
180
+ duration_per_word = segment_duration / len(words)
181
+ start_time = segment["start"]
182
+ for word in words:
183
+ end_time = start_time + duration_per_word
184
+ o.append((start_time, end_time, word))
185
+ start_time = end_time
186
+
187
+ return o
188
+
189
+
190
+ def segments_end_ts(self, res):
191
+ return [s["end"] for s in res]
192
+
193
+ def transcribe(self, audio_data, prompt=None, *args, **kwargs):
194
+ # Write the audio data to a buffer
195
+ buffer = io.BytesIO()
196
+ buffer.name = "temp.wav"
197
+ sf.write(buffer, audio_data, samplerate=16000, format='WAV', subtype='PCM_16')
198
+ buffer.seek(0) # Reset buffer's position to the beginning
199
+
200
+ # Prepare transcription parameters
201
+ transcription_params = {
202
+ "model": self.modelname,
203
+ "file": buffer,
204
+ "response_format": self.response_format,
205
+ "temperature": self.temperature
206
+ }
207
+ if self.language:
208
+ transcription_params["language"] = self.language
209
+ if prompt:
210
+ transcription_params["prompt"] = prompt
211
+
212
+ # Perform the transcription
213
+ transcript = self.client.audio.transcriptions.create(**transcription_params)
214
+
215
+ return transcript.segments
216
+
217
 
218
  class HypothesisBuffer:
219
 
 
525
  parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
526
  parser.add_argument('--lan', '--language', type=str, default='en', help="Language code for transcription, e.g. en,de,cs.")
527
  parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
528
+ parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped", "openai-api"],help='Load only this backend for Whisper processing.')
529
  parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
530
  parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
531
  parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
 
565
 
566
  if args.backend == "faster-whisper":
567
  asr_cls = FasterWhisperASR
568
+ elif args.backend == "openai-api":
569
+ asr_cls = OpenaiApiASR
570
  else:
571
  asr_cls = WhisperTimestampedASR
572
 
whisper_online_server.py CHANGED
@@ -29,6 +29,8 @@ print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",
29
  if args.backend == "faster-whisper":
30
  from faster_whisper import WhisperModel
31
  asr_cls = FasterWhisperASR
 
 
32
  else:
33
  import whisper
34
  import whisper_timestamped
 
29
  if args.backend == "faster-whisper":
30
  from faster_whisper import WhisperModel
31
  asr_cls = FasterWhisperASR
32
+ elif args.backend == "openai-api":
33
+ asr_cls = OpenaiApiASR
34
  else:
35
  import whisper
36
  import whisper_timestamped