use of silero model instead of silero VadIterator
Browse files- mic_test_whisper_simple.py +4 -4
- mic_test_whisper_streaming.py +1 -1
- microphone_stream.py +1 -1
- voice_activity_controller.py +56 -52
- whisper_online.py +8 -1
mic_test_whisper_simple.py
CHANGED
@@ -39,7 +39,6 @@ class SimpleASRProcessor:
|
|
39 |
if chunk is not None:
|
40 |
sf = soundfile.SoundFile(io.BytesIO(chunk), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
|
41 |
audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
|
42 |
-
# self.audio_buffer.append(chunk)
|
43 |
out = []
|
44 |
out.append(audio)
|
45 |
a = np.concatenate(out)
|
@@ -47,15 +46,16 @@ class SimpleASRProcessor:
|
|
47 |
|
48 |
if is_final and len(self.audio_buffer) > 0:
|
49 |
res = self.asr.transcribe(self.audio_buffer, init_prompt=self.init_prompt)
|
50 |
-
# use custom ts_words
|
51 |
tsw = self.ts_words(res)
|
|
|
52 |
self.init_prompt = self.init_prompt + tsw
|
53 |
self.init_prompt = self.init_prompt [-100:]
|
54 |
self.audio_buffer.resize(0)
|
55 |
iter_in_phrase =0
|
|
|
56 |
yield True, tsw
|
57 |
-
# show progress evry
|
58 |
-
elif iter_in_phrase %
|
59 |
res = self.asr.transcribe(self.audio_buffer, init_prompt=self.init_prompt)
|
60 |
# use custom ts_words
|
61 |
tsw = self.ts_words(res)
|
|
|
39 |
if chunk is not None:
|
40 |
sf = soundfile.SoundFile(io.BytesIO(chunk), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
|
41 |
audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
|
|
|
42 |
out = []
|
43 |
out.append(audio)
|
44 |
a = np.concatenate(out)
|
|
|
46 |
|
47 |
if is_final and len(self.audio_buffer) > 0:
|
48 |
res = self.asr.transcribe(self.audio_buffer, init_prompt=self.init_prompt)
|
|
|
49 |
tsw = self.ts_words(res)
|
50 |
+
|
51 |
self.init_prompt = self.init_prompt + tsw
|
52 |
self.init_prompt = self.init_prompt [-100:]
|
53 |
self.audio_buffer.resize(0)
|
54 |
iter_in_phrase =0
|
55 |
+
|
56 |
yield True, tsw
|
57 |
+
# show progress evry 50 chunks
|
58 |
+
elif iter_in_phrase % 50 == 0 and len(self.audio_buffer) > 0:
|
59 |
res = self.asr.transcribe(self.audio_buffer, init_prompt=self.init_prompt)
|
60 |
# use custom ts_words
|
61 |
tsw = self.ts_words(res)
|
mic_test_whisper_streaming.py
CHANGED
@@ -13,7 +13,7 @@ model = "large-v2"
|
|
13 |
src_lan = "en" # source language
|
14 |
tgt_lan = "en" # target language -- same as source for ASR, "en" if translate task is used
|
15 |
use_vad_result = True
|
16 |
-
min_sample_length = 1 * SAMPLING_RATE
|
17 |
|
18 |
|
19 |
|
|
|
13 |
src_lan = "en" # source language
|
14 |
tgt_lan = "en" # target language -- same as source for ASR, "en" if translate task is used
|
15 |
use_vad_result = True
|
16 |
+
min_sample_length = 1.5 * SAMPLING_RATE
|
17 |
|
18 |
|
19 |
|
microphone_stream.py
CHANGED
@@ -29,7 +29,7 @@ class MicrophoneStream:
|
|
29 |
self._pyaudio = pyaudio.PyAudio()
|
30 |
self.sample_rate = sample_rate
|
31 |
|
32 |
-
self._chunk_size = int(self.sample_rate *
|
33 |
self._stream = self._pyaudio.open(
|
34 |
format=pyaudio.paInt16,
|
35 |
channels=1,
|
|
|
29 |
self._pyaudio = pyaudio.PyAudio()
|
30 |
self.sample_rate = sample_rate
|
31 |
|
32 |
+
self._chunk_size = int(self.sample_rate * 40 / 1000)
|
33 |
self._stream = self._pyaudio.open(
|
34 |
format=pyaudio.paInt16,
|
35 |
channels=1,
|
voice_activity_controller.py
CHANGED
@@ -3,16 +3,27 @@ import numpy as np
|
|
3 |
# import sounddevice as sd
|
4 |
import torch
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
class VoiceActivityController:
|
9 |
def __init__(
|
10 |
self,
|
11 |
sampling_rate = 16000,
|
12 |
-
|
13 |
-
|
|
|
14 |
use_vad_result = True,
|
15 |
activity_detected_callback=None,
|
|
|
16 |
):
|
17 |
self.activity_detected_callback=activity_detected_callback
|
18 |
self.model, self.utils = torch.hub.load(
|
@@ -26,84 +37,77 @@ class VoiceActivityController:
|
|
26 |
collect_chunks) = self.utils
|
27 |
|
28 |
self.sampling_rate = sampling_rate
|
29 |
-
self.
|
30 |
-
self.
|
|
|
31 |
|
32 |
self.use_vad_result = use_vad_result
|
33 |
-
self.vad_iterator = VADIterator(
|
34 |
-
model =self.model,
|
35 |
-
threshold = 0.3, # 0.5
|
36 |
-
sampling_rate= self.sampling_rate,
|
37 |
-
min_silence_duration_ms = 500, #100
|
38 |
-
speech_pad_ms = 400 #30
|
39 |
-
)
|
40 |
self.last_marked_chunk = None
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
sound = sound.squeeze() # depends on the use case
|
49 |
-
return sound
|
50 |
|
51 |
def apply_vad(self, audio):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
self.last_marked_chunk = chunk
|
65 |
-
return audio[:end] if self.use_vad_result else audio, end ,len(audio) - end
|
66 |
|
67 |
-
if self.
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
if "end" in self.last_marked_chunk:
|
72 |
-
return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0 ,len(audio)
|
73 |
|
74 |
-
return np.array([], dtype=np.float16) if self.use_vad_result else audio, 0 , 0
|
75 |
|
76 |
|
77 |
|
78 |
def detect_user_speech(self, audio_stream, audio_in_int16 = False):
|
79 |
-
|
80 |
speech_len = 0
|
81 |
|
82 |
for data in audio_stream: # replace with your condition of choice
|
83 |
-
# if isinstance(data, EndOfTransmission):
|
84 |
-
# raise EndOfTransmission("End of transmission detected")
|
85 |
|
86 |
|
87 |
audio_block = np.frombuffer(data, dtype=np.int16) if not audio_in_int16 else data
|
88 |
wav = audio_block
|
89 |
|
90 |
-
|
91 |
is_final = False
|
92 |
-
voice_audio, speech_in_wav,
|
93 |
-
|
94 |
|
95 |
if speech_in_wav > 0 :
|
96 |
-
|
97 |
speech_len += speech_in_wav
|
98 |
if self.activity_detected_callback is not None:
|
99 |
self.activity_detected_callback()
|
100 |
|
101 |
-
|
102 |
-
if
|
|
|
103 |
is_final = True
|
104 |
-
|
105 |
-
speech_len = 0
|
106 |
-
|
107 |
|
108 |
yield voice_audio.tobytes(), is_final
|
109 |
|
|
|
3 |
# import sounddevice as sd
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
+
import datetime
|
7 |
|
8 |
|
9 |
+
def int2float(sound):
|
10 |
+
abs_max = np.abs(sound).max()
|
11 |
+
sound = sound.astype('float32')
|
12 |
+
if abs_max > 0:
|
13 |
+
sound *= 1/32768
|
14 |
+
sound = sound.squeeze() # depends on the use case
|
15 |
+
return sound
|
16 |
+
|
17 |
class VoiceActivityController:
|
18 |
def __init__(
|
19 |
self,
|
20 |
sampling_rate = 16000,
|
21 |
+
min_silence_to_final_ms = 500,
|
22 |
+
min_speech_to_final_ms = 100,
|
23 |
+
min_silence_duration_ms = 100,
|
24 |
use_vad_result = True,
|
25 |
activity_detected_callback=None,
|
26 |
+
threshold =0.3
|
27 |
):
|
28 |
self.activity_detected_callback=activity_detected_callback
|
29 |
self.model, self.utils = torch.hub.load(
|
|
|
37 |
collect_chunks) = self.utils
|
38 |
|
39 |
self.sampling_rate = sampling_rate
|
40 |
+
self.final_silence_limit = min_silence_to_final_ms * self.sampling_rate / 1000
|
41 |
+
self.final_speech_limit = min_speech_to_final_ms *self.sampling_rate / 1000
|
42 |
+
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
43 |
|
44 |
self.use_vad_result = use_vad_result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
self.last_marked_chunk = None
|
46 |
+
self.threshold = threshold
|
47 |
+
self.reset_states()
|
48 |
+
|
49 |
+
def reset_states(self):
|
50 |
+
self.model.reset_states()
|
51 |
+
self.temp_end = 0
|
52 |
+
self.current_sample = 0
|
|
|
|
|
53 |
|
54 |
def apply_vad(self, audio):
|
55 |
+
x = int2float(audio)
|
56 |
+
if not torch.is_tensor(x):
|
57 |
+
try:
|
58 |
+
x = torch.Tensor(x)
|
59 |
+
except:
|
60 |
+
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
61 |
+
|
62 |
+
speech_prob = self.model(x, self.sampling_rate).item()
|
63 |
+
|
64 |
+
window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
|
65 |
+
self.current_sample += window_size_samples
|
66 |
+
|
|
|
|
|
67 |
|
68 |
+
if (speech_prob >= self.threshold):
|
69 |
+
self.temp_end = 0
|
70 |
+
return audio, window_size_samples, 0
|
71 |
+
|
72 |
+
else :
|
73 |
+
if not self.temp_end:
|
74 |
+
self.temp_end = self.current_sample
|
75 |
+
|
76 |
+
if self.current_sample - self.temp_end < self.min_silence_samples:
|
77 |
+
return audio, 0, window_size_samples
|
78 |
+
else:
|
79 |
+
return np.array([], dtype=np.float16) , 0, window_size_samples
|
80 |
|
|
|
|
|
81 |
|
|
|
82 |
|
83 |
|
84 |
|
85 |
def detect_user_speech(self, audio_stream, audio_in_int16 = False):
|
86 |
+
last_silence_len= 0
|
87 |
speech_len = 0
|
88 |
|
89 |
for data in audio_stream: # replace with your condition of choice
|
|
|
|
|
90 |
|
91 |
|
92 |
audio_block = np.frombuffer(data, dtype=np.int16) if not audio_in_int16 else data
|
93 |
wav = audio_block
|
94 |
|
|
|
95 |
is_final = False
|
96 |
+
voice_audio, speech_in_wav, last_silent_in_wav = self.apply_vad(wav)
|
97 |
+
|
98 |
|
99 |
if speech_in_wav > 0 :
|
100 |
+
last_silence_len= 0
|
101 |
speech_len += speech_in_wav
|
102 |
if self.activity_detected_callback is not None:
|
103 |
self.activity_detected_callback()
|
104 |
|
105 |
+
last_silence_len += last_silent_in_wav
|
106 |
+
if last_silence_len>= self.final_silence_limit and speech_len >= self.final_speech_limit:
|
107 |
+
|
108 |
is_final = True
|
109 |
+
last_silence_len= 0
|
110 |
+
speech_len = 0
|
|
|
111 |
|
112 |
yield voice_audio.tobytes(), is_final
|
113 |
|
whisper_online.py
CHANGED
@@ -4,7 +4,7 @@ import numpy as np
|
|
4 |
import librosa
|
5 |
from functools import lru_cache
|
6 |
import time
|
7 |
-
|
8 |
|
9 |
|
10 |
@lru_cache
|
@@ -118,14 +118,21 @@ class FasterWhisperASR(ASRBase):
|
|
118 |
return model
|
119 |
|
120 |
def transcribe(self, audio, init_prompt=""):
|
|
|
|
|
121 |
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
|
122 |
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
|
|
|
|
|
|
|
123 |
return list(segments)
|
124 |
|
125 |
def ts_words(self, segments):
|
126 |
o = []
|
127 |
for segment in segments:
|
128 |
for word in segment.words:
|
|
|
|
|
129 |
# not stripping the spaces -- should not be merged with them!
|
130 |
w = word.word
|
131 |
t = (word.start, word.end, w)
|
|
|
4 |
import librosa
|
5 |
from functools import lru_cache
|
6 |
import time
|
7 |
+
import datetime
|
8 |
|
9 |
|
10 |
@lru_cache
|
|
|
118 |
return model
|
119 |
|
120 |
def transcribe(self, audio, init_prompt=""):
|
121 |
+
|
122 |
+
# tiempo_inicio = datetime.datetime.now()
|
123 |
# tested: beam_size=5 is faster and better than 1 (on one 200 second document from En ESIC, min chunk 0.01)
|
124 |
segments, info = self.model.transcribe(audio, language=self.original_language, initial_prompt=init_prompt, beam_size=5, word_timestamps=True, condition_on_previous_text=True, **self.transcribe_kargs)
|
125 |
+
|
126 |
+
# print(f'({datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")})----------r> whisper transcribe take { (datetime.datetime.now() -tiempo_inicio) } ms.')
|
127 |
+
|
128 |
return list(segments)
|
129 |
|
130 |
def ts_words(self, segments):
|
131 |
o = []
|
132 |
for segment in segments:
|
133 |
for word in segment.words:
|
134 |
+
if segment.no_speech_prob > 0.9:
|
135 |
+
continue
|
136 |
# not stripping the spaces -- should not be merged with them!
|
137 |
w = word.word
|
138 |
t = (word.start, word.end, w)
|