remove whisper_fastapi_online_server.py
Browse files- README.md +5 -5
- whisper_fastapi_online_server.py +0 -83
README.md
CHANGED
@@ -15,14 +15,14 @@
|
|
15 |
|
16 |
## π Overview
|
17 |
|
18 |
-
This project is based on [Whisper Streaming](https://github.com/ufal/whisper_streaming) and lets you transcribe audio directly from your browser. WhisperLiveKit provides a complete backend solution for real-time speech transcription with
|
19 |
|
20 |
### π Architecture
|
21 |
|
22 |
WhisperLiveKit consists of two main components:
|
23 |
|
24 |
- **Backend (Server)**: FastAPI WebSocket server that processes audio and provides real-time transcription
|
25 |
-
- **Frontend Example**: Basic HTML & JavaScript implementation
|
26 |
|
27 |
> **Note**: We recommend installing this library on the server/backend. For the frontend, you can use and adapt the provided HTML template from [whisperlivekit/web/live_transcription.html](https://github.com/QuentinFuxa/WhisperLiveKit/blob/main/whisperlivekit/web/live_transcription.html) for your specific use case.
|
28 |
|
@@ -33,13 +33,13 @@ WhisperLiveKit consists of two main components:
|
|
33 |
- **π Fully Local** - All processing happens on your machine - no data sent to external servers
|
34 |
- **π± Multi-User Support** - Handle multiple users simultaneously with a single backend/server
|
35 |
|
36 |
-
### βοΈ
|
37 |
|
|
|
38 |
- **Multi-User Support** β Handles multiple users simultaneously by decoupling backend and online ASR
|
|
|
39 |
- **MLX Whisper Backend** β Optimized for Apple Silicon for faster local processing
|
40 |
- **Buffering Preview** β Displays unvalidated transcription segments
|
41 |
-
- **Confidence Validation** β Immediately validate high-confidence tokens for faster inference
|
42 |
-
- **Apple Silicon Optimized** - MLX backend for faster local processing on Mac
|
43 |
|
44 |
## π Quick Start
|
45 |
|
|
|
15 |
|
16 |
## π Overview
|
17 |
|
18 |
+
This project is based on [Whisper Streaming](https://github.com/ufal/whisper_streaming) and lets you transcribe audio directly from your browser. WhisperLiveKit provides a complete backend solution for real-time speech transcription with a functional and simple frontend that you can customize for your own needs. Everything runs locally on your machine β¨
|
19 |
|
20 |
### π Architecture
|
21 |
|
22 |
WhisperLiveKit consists of two main components:
|
23 |
|
24 |
- **Backend (Server)**: FastAPI WebSocket server that processes audio and provides real-time transcription
|
25 |
+
- **Frontend Example**: Basic HTML & JavaScript implementation to capture and stream audio
|
26 |
|
27 |
> **Note**: We recommend installing this library on the server/backend. For the frontend, you can use and adapt the provided HTML template from [whisperlivekit/web/live_transcription.html](https://github.com/QuentinFuxa/WhisperLiveKit/blob/main/whisperlivekit/web/live_transcription.html) for your specific use case.
|
28 |
|
|
|
33 |
- **π Fully Local** - All processing happens on your machine - no data sent to external servers
|
34 |
- **π± Multi-User Support** - Handle multiple users simultaneously with a single backend/server
|
35 |
|
36 |
+
### βοΈ Core ifferences from [Whisper Streaming](https://github.com/ufal/whisper_streaming)
|
37 |
|
38 |
+
- **Automatic Silence Chunking** β Automatically chunks when no audio is detected to limit buffer size
|
39 |
- **Multi-User Support** β Handles multiple users simultaneously by decoupling backend and online ASR
|
40 |
+
- **Confidence Validation** β Immediately validate high-confidence tokens for faster inference
|
41 |
- **MLX Whisper Backend** β Optimized for Apple Silicon for faster local processing
|
42 |
- **Buffering Preview** β Displays unvalidated transcription segments
|
|
|
|
|
43 |
|
44 |
## π Quick Start
|
45 |
|
whisper_fastapi_online_server.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
from contextlib import asynccontextmanager
|
2 |
-
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
3 |
-
from fastapi.responses import HTMLResponse
|
4 |
-
from fastapi.middleware.cors import CORSMiddleware
|
5 |
-
|
6 |
-
from whisperlivekit import WhisperLiveKit, parse_args
|
7 |
-
from whisperlivekit.audio_processor import AudioProcessor
|
8 |
-
|
9 |
-
import asyncio
|
10 |
-
import logging
|
11 |
-
import os
|
12 |
-
|
13 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
14 |
-
logging.getLogger().setLevel(logging.WARNING)
|
15 |
-
logger = logging.getLogger(__name__)
|
16 |
-
logger.setLevel(logging.DEBUG)
|
17 |
-
|
18 |
-
kit = None
|
19 |
-
|
20 |
-
@asynccontextmanager
|
21 |
-
async def lifespan(app: FastAPI):
|
22 |
-
global kit
|
23 |
-
kit = WhisperLiveKit()
|
24 |
-
yield
|
25 |
-
|
26 |
-
app = FastAPI(lifespan=lifespan)
|
27 |
-
app.add_middleware(
|
28 |
-
CORSMiddleware,
|
29 |
-
allow_origins=["*"],
|
30 |
-
allow_credentials=True,
|
31 |
-
allow_methods=["*"],
|
32 |
-
allow_headers=["*"],
|
33 |
-
)
|
34 |
-
|
35 |
-
|
36 |
-
@app.get("/")
|
37 |
-
async def get():
|
38 |
-
return HTMLResponse(kit.web_interface())
|
39 |
-
|
40 |
-
|
41 |
-
async def handle_websocket_results(websocket, results_generator):
|
42 |
-
"""Consumes results from the audio processor and sends them via WebSocket."""
|
43 |
-
try:
|
44 |
-
async for response in results_generator:
|
45 |
-
await websocket.send_json(response)
|
46 |
-
except Exception as e:
|
47 |
-
logger.warning(f"Error in WebSocket results handler: {e}")
|
48 |
-
|
49 |
-
|
50 |
-
@app.websocket("/asr")
|
51 |
-
async def websocket_endpoint(websocket: WebSocket):
|
52 |
-
audio_processor = AudioProcessor()
|
53 |
-
|
54 |
-
await websocket.accept()
|
55 |
-
logger.info("WebSocket connection opened.")
|
56 |
-
|
57 |
-
results_generator = await audio_processor.create_tasks()
|
58 |
-
websocket_task = asyncio.create_task(handle_websocket_results(websocket, results_generator))
|
59 |
-
|
60 |
-
try:
|
61 |
-
while True:
|
62 |
-
message = await websocket.receive_bytes()
|
63 |
-
await audio_processor.process_audio(message)
|
64 |
-
except WebSocketDisconnect:
|
65 |
-
logger.warning("WebSocket disconnected.")
|
66 |
-
finally:
|
67 |
-
websocket_task.cancel()
|
68 |
-
await audio_processor.cleanup()
|
69 |
-
logger.info("WebSocket endpoint cleaned up.")
|
70 |
-
|
71 |
-
if __name__ == "__main__":
|
72 |
-
import uvicorn
|
73 |
-
|
74 |
-
args = parse_args()
|
75 |
-
|
76 |
-
uvicorn.run(
|
77 |
-
"whisper_fastapi_online_server:app",
|
78 |
-
host=args.host,
|
79 |
-
port=args.port,
|
80 |
-
reload=False,
|
81 |
-
log_level="info",
|
82 |
-
lifespan="on",
|
83 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|