Tijs Zwinkels commited on
Commit
f412812
·
1 Parent(s): b66c61c

OpenAI Whisper API backend

Browse files
Files changed (2) hide show
  1. whisper_online.py +75 -1
  2. whisper_online_server.py +2 -0
whisper_online.py CHANGED
@@ -4,6 +4,8 @@ import numpy as np
4
  import librosa
5
  from functools import lru_cache
6
  import time
 
 
7
 
8
 
9
 
@@ -148,6 +150,76 @@ class FasterWhisperASR(ASRBase):
148
  self.transcribe_kargs["task"] = "translate"
149
 
150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
152
  class HypothesisBuffer:
153
 
@@ -459,7 +531,7 @@ def add_shared_args(parser):
459
  parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
460
  parser.add_argument('--lan', '--language', type=str, default='en', help="Source language code, e.g. en,de,cs, or 'auto' for language detection.")
461
  parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
462
- parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped"],help='Load only this backend for Whisper processing.')
463
  parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
464
  parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
465
  parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
@@ -499,6 +571,8 @@ if __name__ == "__main__":
499
 
500
  if args.backend == "faster-whisper":
501
  asr_cls = FasterWhisperASR
 
 
502
  else:
503
  asr_cls = WhisperTimestampedASR
504
 
 
4
  import librosa
5
  from functools import lru_cache
6
  import time
7
+ import io
8
+ import soundfile as sf
9
 
10
 
11
 
 
150
  self.transcribe_kargs["task"] = "translate"
151
 
152
 
153
+ class OpenaiApiASR(ASRBase):
154
+ """Uses OpenAI's Whisper API for audio transcription."""
155
+
156
+ def __init__(self, modelsize=None, lan=None, cache_dir=None, model_dir=None, response_format="verbose_json", temperature=0):
157
+ self.modelname = "whisper-1" # modelsize is not used but kept for interface consistency
158
+ self.language = lan # ISO-639-1 language code
159
+ self.response_format = response_format
160
+ self.temperature = temperature
161
+ self.model = self.load_model(modelsize, cache_dir, model_dir)
162
+
163
+ def load_model(self, *args, **kwargs):
164
+ from openai import OpenAI
165
+ self.client = OpenAI()
166
+ # Since we're using the OpenAI API, there's no model to load locally.
167
+ print("Model configuration is set to use the OpenAI Whisper API.")
168
+
169
+ def ts_words(self, segments):
170
+ o = []
171
+ for segment in segments:
172
+ # Skip segments containing no speech
173
+ if segment["no_speech_prob"] > 0.8:
174
+ continue
175
+
176
+ # Splitting the text into words and filtering out empty strings
177
+ words = [word.strip() for word in segment["text"].split() if word.strip()]
178
+
179
+ if not words:
180
+ continue
181
+
182
+ # Assign start and end times for each word
183
+ # We only have timestamps per segment, so interpolating start and end-times
184
+ # assuming equal duration per word
185
+ segment_duration = segment["end"] - segment["start"]
186
+ duration_per_word = segment_duration / len(words)
187
+ start_time = segment["start"]
188
+ for word in words:
189
+ end_time = start_time + duration_per_word
190
+ o.append((start_time, end_time, word))
191
+ start_time = end_time
192
+
193
+ return o
194
+
195
+
196
+ def segments_end_ts(self, res):
197
+ return [s["end"] for s in res]
198
+
199
+ def transcribe(self, audio_data, prompt=None, *args, **kwargs):
200
+ # Write the audio data to a buffer
201
+ buffer = io.BytesIO()
202
+ buffer.name = "temp.wav"
203
+ sf.write(buffer, audio_data, samplerate=16000, format='WAV', subtype='PCM_16')
204
+ buffer.seek(0) # Reset buffer's position to the beginning
205
+
206
+ # Prepare transcription parameters
207
+ transcription_params = {
208
+ "model": self.modelname,
209
+ "file": buffer,
210
+ "response_format": self.response_format,
211
+ "temperature": self.temperature
212
+ }
213
+ if self.language:
214
+ transcription_params["language"] = self.language
215
+ if prompt:
216
+ transcription_params["prompt"] = prompt
217
+
218
+ # Perform the transcription
219
+ transcript = self.client.audio.transcriptions.create(**transcription_params)
220
+
221
+ return transcript.segments
222
+
223
 
224
  class HypothesisBuffer:
225
 
 
531
  parser.add_argument('--model_dir', type=str, default=None, help="Dir where Whisper model.bin and other files are saved. This option overrides --model and --model_cache_dir parameter.")
532
  parser.add_argument('--lan', '--language', type=str, default='en', help="Source language code, e.g. en,de,cs, or 'auto' for language detection.")
533
  parser.add_argument('--task', type=str, default='transcribe', choices=["transcribe","translate"],help="Transcribe or translate.")
534
+ parser.add_argument('--backend', type=str, default="faster-whisper", choices=["faster-whisper", "whisper_timestamped", "openai-api"],help='Load only this backend for Whisper processing.')
535
  parser.add_argument('--vad', action="store_true", default=False, help='Use VAD = voice activity detection, with the default parameters.')
536
  parser.add_argument('--buffer_trimming', type=str, default="segment", choices=["sentence", "segment"],help='Buffer trimming strategy -- trim completed sentences marked with punctuation mark and detected by sentence segmenter, or the completed segments returned by Whisper. Sentence segmenter must be installed for "sentence" option.')
537
  parser.add_argument('--buffer_trimming_sec', type=float, default=15, help='Buffer trimming length threshold in seconds. If buffer length is longer, trimming sentence/segment is triggered.')
 
571
 
572
  if args.backend == "faster-whisper":
573
  asr_cls = FasterWhisperASR
574
+ elif args.backend == "openai-api":
575
+ asr_cls = OpenaiApiASR
576
  else:
577
  asr_cls = WhisperTimestampedASR
578
 
whisper_online_server.py CHANGED
@@ -29,6 +29,8 @@ print(f"Loading Whisper {size} model for {language}...",file=sys.stderr,end=" ",
29
  if args.backend == "faster-whisper":
30
  from faster_whisper import WhisperModel
31
  asr_cls = FasterWhisperASR
 
 
32
  else:
33
  import whisper
34
  import whisper_timestamped
 
29
  if args.backend == "faster-whisper":
30
  from faster_whisper import WhisperModel
31
  asr_cls = FasterWhisperASR
32
+ elif args.backend == "openai-api":
33
+ asr_cls = OpenaiApiASR
34
  else:
35
  import whisper
36
  import whisper_timestamped