wiki_tools / app.py
nurasaki's picture
Initial commit (copied from hotel_tools space)
cb3dcae
raw
history blame
6.62 kB
import gradio as gr
from gradio import ChatMessage
import json
from openai import OpenAI
from tools import tools, oitools
from dotenv import load_dotenv
from datetime import datetime
import os
import re
load_dotenv(".env")
HF_TOKEN = os.environ.get("HF_TOKEN")
BASE_URL = os.environ.get("BASE_URL")
SYSTEM_PROMPT_TEMPLATE = """You are an AI assistant designed to assist users with a **hotel booking and information system**. Your primary role is to provide detailed and accurate information about the hotel, including available accommodations, facilities, dining options, and reservation services. You can assist with **hotel room bookings**, modify or cancel reservations, and answer general inquiries about the hotel.
### **Response Guidelines:**
- **Accuracy & Completeness:** Never provide information that is not explicitly available. If a required parameter (e.g., check-in date, check-out date, number of guests, or room type) is missing, ask the user to provide it before proceeding.
- **No Hallucinations:** Do not assume details. If you are unsure about something, ask the user for clarification.
- **Consistency:** Always respond in the same language as the user’s query.
### **Booking Requirements:**
You **can only process hotel room reservations**.
If a user requests a **restaurant, flight, or any other type of reservation**, immediately inform them that you **cannot process those reservations**.
Do **not** ask for further details about restaurant or flight bookings. Simply clarify that you **only handle hotel room reservations**.
Today’s date is **{date}**."""
# print(json.dumps(oitools, indent=2))
client = OpenAI(
base_url=f"{BASE_URL}/v1",
api_key=HF_TOKEN
)
def today_date():
return datetime.today().strftime('%A, %B %d, %Y, %I:%M %p')
def clean_json_string(json_str):
return re.sub(r'[ ,}\s]+$', '', json_str) + '}'
def completion(history, model, system_prompt: str, tools=None):
messages = [{"role": "system", "content": system_prompt.format(date=today_date())}]
for msg in history:
if isinstance(msg, dict):
msg = ChatMessage(**msg)
if msg.role == "assistant" and hasattr(msg, "metadata") and msg.metadata:
tools_calls = json.loads(msg.metadata.get("title", "[]"))
# for tool_calls in tools_calls:
# tool_calls["function"]["arguments"] = json.loads(tool_calls["function"]["arguments"])
messages.append({"role": "assistant", "tool_calls": tools_calls, "content": ""})
messages.append({"role": "tool", "content": msg.content})
else:
messages.append({"role": msg.role, "content": msg.content})
request_params = {
"model": model,
"messages": messages,
"stream": True,
"max_tokens": 1000,
"temperature": 0.2,
"frequency_penalty": 1,
"extra_body": {"repetition_penalty": 1.1},
}
if tools:
request_params.update({"tool_choice": "auto", "tools": tools})
return client.chat.completions.create(**request_params)
def llm_in_loop(history, system_prompt, recursive):
try:
models = client.models.list()
model = models.data[0].id if models.data else "gpt-3.5-turbo"
except Exception as err:
gr.Warning("The model is initializing. Please wait; this may take 5 to 10 minutes ⏳.", duration=20)
raise err
arguments = ""
name = ""
chat_completion = completion(history=history, tools=oitools, model=model, system_prompt=system_prompt)
appended = False
# if chat_completion.choices and chat_completion.choices[0].message.tool_calls:
# call = chat_completion.choices[0].message.tool_calls[0]
# if hasattr(call.function, "name") and call.function.name:
# name = call.function.name
# if hasattr(call.function, "arguments") and call.function.arguments:
# arguments += call.function.arguments
# elif chat_completion.choices[0].message.content:
# if not appended:
# history.append(ChatMessage(role="assistant", content=""))
# appended = True
# history[-1].content += chat_completion.choices[0].message.content
# yield history[recursive:]
for chunk in chat_completion:
if chunk.choices and chunk.choices[0].delta.tool_calls:
call = chunk.choices[0].delta.tool_calls[0]
if hasattr(call.function, "name") and call.function.name:
name = call.function.name
if hasattr(call.function, "arguments") and call.function.arguments:
arguments += call.function.arguments
elif chunk.choices[0].delta.content:
if not appended:
history.append(ChatMessage(role="assistant", content=""))
appended = True
history[-1].content += chunk.choices[0].delta.content
yield history[recursive:]
arguments = clean_json_string(arguments) if arguments else "{}"
print(name, arguments)
arguments = json.loads(arguments)
print(name, arguments)
print("====================")
if appended:
recursive -= 1
if name:
result = f"💥 Error using tool {name}, tool doesn't exist" if name not in tools else str(tools[name].invoke(input=arguments))
result = json.dumps({name: result}, ensure_ascii=False)
# msg = ChatMessage(
# role="assistant",
# content="",
# metadata= {"title": f"🛠️ Using tool '{name}', arguments: {json.dumps(json_arguments, ensure_ascii=False)}"},
# options=[{"label":"tool_calls", "value": json.dumps([{"id": "call_FthC9qRpsL5kBpwwyw6c7j4k","function": {"arguments": arguments,"name": name},"type": "function"}])}]
# )
history.append(ChatMessage(role="assistant", content=result, metadata={"title": json.dumps([{"id": "call_id", "function": {"arguments": json.dumps(arguments, ensure_ascii=False), "name": name}, "type": "function"}], ensure_ascii=False)}))
yield history[recursive:]
yield from llm_in_loop(history, system_prompt, recursive - 1)
def respond(message, history, additional_inputs):
history.append(ChatMessage(role="user", content=message))
yield from llm_in_loop(history, additional_inputs, -1)
if __name__ == "__main__":
system_prompt = gr.Textbox(label="System prompt", value=SYSTEM_PROMPT_TEMPLATE, lines=3)
demo = gr.ChatInterface(respond, type="messages", additional_inputs=[system_prompt])
demo.launch()