Spaces:
Runtime error
Runtime error
add app, requirements and pre-commit
Browse files- .pre-commit-config.yaml +37 -0
- app.py +73 -0
- requirements.txt +4 -0
.pre-commit-config.yaml
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
default_language_version:
|
| 2 |
+
python: python3.7
|
| 3 |
+
repos:
|
| 4 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
| 5 |
+
rev: v4.3.0
|
| 6 |
+
hooks:
|
| 7 |
+
- id: check-merge-conflict
|
| 8 |
+
- id: check-case-conflict
|
| 9 |
+
- id: check-yaml
|
| 10 |
+
- id: detect-private-key
|
| 11 |
+
- id: debug-statements
|
| 12 |
+
- id: end-of-file-fixer
|
| 13 |
+
- id: trailing-whitespace
|
| 14 |
+
- id: double-quote-string-fixer
|
| 15 |
+
- id: requirements-txt-fixer
|
| 16 |
+
- repo: https://github.com/asottile/reorder_python_imports
|
| 17 |
+
rev: v3.8.2
|
| 18 |
+
hooks:
|
| 19 |
+
- id: reorder-python-imports
|
| 20 |
+
- repo: https://github.com/asottile/add-trailing-comma
|
| 21 |
+
rev: v2.2.3
|
| 22 |
+
hooks:
|
| 23 |
+
- id: add-trailing-comma
|
| 24 |
+
- repo: https://github.com/asottile/pyupgrade
|
| 25 |
+
rev: v2.37.3
|
| 26 |
+
hooks:
|
| 27 |
+
- id: pyupgrade
|
| 28 |
+
args: [--py37-plus]
|
| 29 |
+
- repo: https://github.com/pre-commit/mirrors-autopep8
|
| 30 |
+
rev: v1.7.0
|
| 31 |
+
hooks:
|
| 32 |
+
- id: autopep8
|
| 33 |
+
- repo: https://github.com/pycqa/flake8
|
| 34 |
+
rev: 5.0.4
|
| 35 |
+
hooks:
|
| 36 |
+
- id: flake8
|
| 37 |
+
additional_dependencies: [flake8-typing-imports==1.12.0]
|
app.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from CCAgT_utils.types.mask import Mask
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from torch import nn
|
| 7 |
+
from transformers import SegformerFeatureExtractor
|
| 8 |
+
from transformers import SegformerForSemanticSegmentation
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 12 |
+
|
| 13 |
+
model_hub_name = 'lapix/segformer-b3-finetuned-ccagt-400-300'
|
| 14 |
+
|
| 15 |
+
model = SegformerForSemanticSegmentation.from_pretrained(
|
| 16 |
+
model_hub_name,
|
| 17 |
+
).to(device)
|
| 18 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
| 19 |
+
model_hub_name,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def query_image(image):
|
| 24 |
+
image = np.array(image)
|
| 25 |
+
img = Image.fromarray(image)
|
| 26 |
+
|
| 27 |
+
pixel_values = feature_extractor(
|
| 28 |
+
image,
|
| 29 |
+
return_tensors='pt',
|
| 30 |
+
).to(device)
|
| 31 |
+
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
outputs = model(pixel_values=pixel_values)
|
| 34 |
+
|
| 35 |
+
logits = outputs.logits
|
| 36 |
+
|
| 37 |
+
upsampled_logits = nn.functional.interpolate(
|
| 38 |
+
logits,
|
| 39 |
+
size=img.size[::-1], # (height, width)
|
| 40 |
+
mode='bilinear',
|
| 41 |
+
align_corners=False,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
segmentation_mask = upsampled_logits.argmax(dim=1)[0]
|
| 45 |
+
|
| 46 |
+
results = Mask(segmentation_mask).colorized() / 255
|
| 47 |
+
|
| 48 |
+
return results
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
title = 'SegFormer (b3) - CCAgT dataset'
|
| 52 |
+
description = f"""
|
| 53 |
+
This is demo for the SegFormer fine-tuned on sub-dataset from
|
| 54 |
+
[CCAgT dataset](https://huggingface.co/datasets/lapix/CCAgT). This model
|
| 55 |
+
was trained to segment cervical cells silver-stained (AgNOR technique)
|
| 56 |
+
images with resolution of 400x300. The model was available at HF hub at
|
| 57 |
+
[{model_hub_name}](https://huggingface.co/{model_hub_name}).
|
| 58 |
+
"""
|
| 59 |
+
examples = [
|
| 60 |
+
[f'https://hf.co/{model_hub_name}/resolve/main/sampleA.png'],
|
| 61 |
+
[f'https://hf.co/{model_hub_name}/resolve/main/sampleB.png'],
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
demo = gr.Interface(
|
| 65 |
+
query_image,
|
| 66 |
+
inputs=[gr.Image()],
|
| 67 |
+
outputs='image',
|
| 68 |
+
title=title,
|
| 69 |
+
description=description,
|
| 70 |
+
examples=examples,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
CCAgT-utils
|
| 2 |
+
numpy
|
| 3 |
+
torch
|
| 4 |
+
transformers
|