|
|
import gradio as gr |
|
|
import spaces |
|
|
import torch |
|
|
from clip_slider_pipeline import CLIPSliderXL |
|
|
from diffusers import StableDiffusionXLPipeline, ControlNetModel, StableDiffusionXLControlNetPipeline, EulerDiscreteScheduler, AutoencoderKL |
|
|
import time |
|
|
import numpy as np |
|
|
import cv2 |
|
|
from PIL import Image |
|
|
|
|
|
|
|
|
def HWC3(x): |
|
|
assert x.dtype == np.uint8 |
|
|
if x.ndim == 2: |
|
|
x = x[:, :, None] |
|
|
assert x.ndim == 3 |
|
|
H, W, C = x.shape |
|
|
assert C == 1 or C == 3 or C == 4 |
|
|
if C == 3: |
|
|
return x |
|
|
if C == 1: |
|
|
return np.concatenate([x, x, x], axis=2) |
|
|
if C == 4: |
|
|
color = x[:, :, 0:3].astype(np.float32) |
|
|
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 |
|
|
y = color * alpha + 255.0 * (1.0 - alpha) |
|
|
y = y.clip(0, 255).astype(np.uint8) |
|
|
return y |
|
|
|
|
|
def process_controlnet_img(image): |
|
|
controlnet_img = np.array(image) |
|
|
controlnet_img = cv2.Canny(controlnet_img, 100, 200) |
|
|
controlnet_img = HWC3(controlnet_img) |
|
|
controlnet_img = Image.fromarray(controlnet_img) |
|
|
|
|
|
|
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
|
pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", vae=vae).to("cuda", torch.float16) |
|
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
clip_slider = CLIPSliderXL(pipe, device=torch.device("cuda")) |
|
|
|
|
|
pipe_adapter = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16) |
|
|
pipe_adapter.scheduler = EulerDiscreteScheduler.from_config(pipe_adapter.scheduler.config) |
|
|
|
|
|
|
|
|
|
|
|
clip_slider_ip = CLIPSliderXL(sd_pipe=pipe_adapter, device=torch.device("cuda")) |
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
|
"xinsir/controlnet-canny-sdxl-1.0", |
|
|
torch_dtype=torch.float16 |
|
|
) |
|
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
|
pipe_controlnet = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
|
"sd-community/sdxl-flash", |
|
|
controlnet=controlnet, |
|
|
vae=vae, |
|
|
torch_dtype=torch.float16, |
|
|
) |
|
|
clip_slider_controlnet = CLIPSliderXL(sd_pipe=pipe_controlnet,device=torch.device("cuda")) |
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
|
def generate(slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, |
|
|
x_concept_1, x_concept_2, y_concept_1, y_concept_2, |
|
|
avg_diff_x_1, avg_diff_x_2, |
|
|
avg_diff_y_1, avg_diff_y_2, |
|
|
img2img_type = None, img = None, |
|
|
controlnet_scale= None, ip_adapter_scale=None): |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
print("slider_x", slider_x) |
|
|
print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2) |
|
|
|
|
|
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]): |
|
|
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) |
|
|
avg_diff_0 = avg_diff[0].to(torch.float16) |
|
|
avg_diff_1 = avg_diff[1].to(torch.float16) |
|
|
x_concept_1, x_concept_2 = slider_x[0], slider_x[1] |
|
|
|
|
|
print("avg_diff_0", avg_diff_0.dtype) |
|
|
|
|
|
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]): |
|
|
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], num_iterations=iterations) |
|
|
avg_diff_2nd_0 = avg_diff_2nd[0].to(torch.float16) |
|
|
avg_diff_2nd_1 = avg_diff_2nd[1].to(torch.float16) |
|
|
y_concept_1, y_concept_2 = slider_y[0], slider_y[1] |
|
|
end_time = time.time() |
|
|
print(f"direction time: {end_time - start_time:.2f} ms") |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
if img2img_type=="controlnet canny" and img is not None: |
|
|
control_img = process_controlnet_img(img) |
|
|
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) |
|
|
elif img2img_type=="ip adapter" and img is not None: |
|
|
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) |
|
|
else: |
|
|
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=0, scale_2nd=0, seed=seed, num_inference_steps=steps, avg_diff=(avg_diff_0,avg_diff_1), avg_diff_2nd=(avg_diff_2nd_0,avg_diff_2nd_1)) |
|
|
|
|
|
end_time = time.time() |
|
|
print(f"generation time: {end_time - start_time:.2f} ms") |
|
|
|
|
|
comma_concepts_x = ', '.join(slider_x) |
|
|
comma_concepts_y = ', '.join(slider_y) |
|
|
|
|
|
avg_diff_x_1 = avg_diff_0.cpu() |
|
|
avg_diff_x_2 = avg_diff_1.cpu() |
|
|
avg_diff_y_1 = avg_diff_2nd_0.cpu() |
|
|
avg_diff_y_2 = avg_diff_2nd_1.cpu() |
|
|
|
|
|
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image |
|
|
|
|
|
@spaces.GPU |
|
|
def update_scales(x,y,prompt,seed, steps, guidance_scale, |
|
|
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, |
|
|
img2img_type = None, img = None, |
|
|
controlnet_scale= None, ip_adapter_scale=None): |
|
|
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) |
|
|
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) |
|
|
if img2img_type=="controlnet canny" and img is not None: |
|
|
control_img = process_controlnet_img(img) |
|
|
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, image=control_img, controlnet_conditioning_scale =controlnet_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) |
|
|
elif img2img_type=="ip adapter" and img is not None: |
|
|
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, ip_adapter_image=img, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) |
|
|
else: |
|
|
image = clip_slider.generate(prompt, guidance_scale=guidance_scale, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) |
|
|
return image |
|
|
|
|
|
@spaces.GPU |
|
|
def update_x(x,y,prompt,seed, steps, |
|
|
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, |
|
|
img2img_type = None, |
|
|
img = None): |
|
|
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) |
|
|
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) |
|
|
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) |
|
|
return image |
|
|
|
|
|
@spaces.GPU |
|
|
def update_y(x,y,prompt, seed, steps, |
|
|
avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, |
|
|
img2img_type = None, |
|
|
img = None): |
|
|
avg_diff = (avg_diff_x_1.cuda(), avg_diff_x_2.cuda()) |
|
|
avg_diff_2nd = (avg_diff_y_1.cuda(), avg_diff_y_2.cuda()) |
|
|
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, seed=seed, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd) |
|
|
return image |
|
|
|
|
|
css = ''' |
|
|
#group { |
|
|
position: relative; |
|
|
width: 420px; |
|
|
height: 420px; |
|
|
margin-bottom: 20px; |
|
|
background-color: white |
|
|
} |
|
|
#x { |
|
|
position: absolute; |
|
|
bottom: 0; |
|
|
left: 25px; |
|
|
width: 400px; |
|
|
} |
|
|
#y { |
|
|
position: absolute; |
|
|
bottom: 20px; |
|
|
left: 67px; |
|
|
width: 400px; |
|
|
transform: rotate(-90deg); |
|
|
transform-origin: left bottom; |
|
|
} |
|
|
#image_out{position:absolute; width: 80%; right: 10px; top: 40px} |
|
|
''' |
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
x_concept_1 = gr.State("") |
|
|
x_concept_2 = gr.State("") |
|
|
y_concept_1 = gr.State("") |
|
|
y_concept_2 = gr.State("") |
|
|
|
|
|
avg_diff_x_1 = gr.State() |
|
|
avg_diff_x_2 = gr.State() |
|
|
avg_diff_y_1 = gr.State() |
|
|
avg_diff_y_2 = gr.State() |
|
|
|
|
|
with gr.Tab("text2image"): |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
slider_x = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) |
|
|
slider_y = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) |
|
|
prompt = gr.Textbox(label="Prompt") |
|
|
submit = gr.Button("find directions") |
|
|
with gr.Column(): |
|
|
with gr.Group(elem_id="group"): |
|
|
x = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="x", interactive=False) |
|
|
y = gr.Slider(minimum=-7, value=0, maximum=7, elem_id="y", interactive=False) |
|
|
output_image = gr.Image(elem_id="image_out") |
|
|
generate_butt = gr.Button("generate") |
|
|
|
|
|
with gr.Accordion(label="advanced options", open=False): |
|
|
iterations = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=400) |
|
|
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) |
|
|
guidance_scale = gr.Slider( |
|
|
label="Guidance scale", |
|
|
minimum=0.1, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=5, |
|
|
) |
|
|
seed = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) |
|
|
|
|
|
|
|
|
with gr.Tab(label="image2image"): |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
image = gr.ImageEditor(type="pil", image_mode="L", crop_size=(512, 512)) |
|
|
slider_x_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) |
|
|
slider_y_a = gr.Dropdown(label="Slider X concept range", allow_custom_value=True, multiselect=True, max_choices=2) |
|
|
img2img_type = gr.Radio(["controlnet canny", "ip adapter"], label="", info="") |
|
|
prompt_a = gr.Textbox(label="Prompt") |
|
|
submit_a = gr.Button("Submit") |
|
|
with gr.Column(): |
|
|
with gr.Group(elem_id="group"): |
|
|
x_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="x", interactive=False) |
|
|
y_a = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False) |
|
|
output_image_a = gr.Image(elem_id="image_out") |
|
|
generate_butt_a = gr.Button("generate") |
|
|
|
|
|
with gr.Accordion(label="advanced options", open=False): |
|
|
iterations_a = gr.Slider(label = "num iterations", minimum=0, value=200, maximum=300) |
|
|
steps_a = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30) |
|
|
guidance_scale_a = gr.Slider( |
|
|
label="Guidance scale", |
|
|
minimum=0.1, |
|
|
maximum=10.0, |
|
|
step=0.1, |
|
|
value=5, |
|
|
) |
|
|
controlnet_conditioning_scale = gr.Slider( |
|
|
label="controlnet conditioning scale", |
|
|
minimum=0.5, |
|
|
maximum=5.0, |
|
|
step=0.1, |
|
|
value=0.7, |
|
|
) |
|
|
ip_adapter_scale = gr.Slider( |
|
|
label="ip adapter scale", |
|
|
minimum=0.5, |
|
|
maximum=5.0, |
|
|
step=0.1, |
|
|
value=0.8, |
|
|
) |
|
|
seed_a = gr.Slider(minimum=0, maximum=np.iinfo(np.int32).max, label="Seed", interactive=True, randomize=True) |
|
|
|
|
|
submit.click(fn=generate, |
|
|
inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], |
|
|
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image]) |
|
|
|
|
|
generate_butt.click(fn=update_scales, inputs=[x,y, prompt, seed, steps, guidance_scale, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image]) |
|
|
generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a]) |
|
|
|
|
|
|
|
|
submit_a.click(fn=generate, |
|
|
inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], |
|
|
outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image_a]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |