Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import spaces | |
| from clip_slider_pipeline import CLIPSliderFlux | |
| from diffusers import FluxPipeline, AutoencoderTiny | |
| import torch | |
| import numpy as np | |
| import cv2 | |
| from PIL import Image | |
| from diffusers.utils import load_image | |
| from diffusers.utils import export_to_gif | |
| import random | |
| # load pipelines | |
| base_model = "black-forest-labs/FLUX.1-schnell" | |
| taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to("cuda") | |
| pipe = FluxPipeline.from_pretrained(base_model, | |
| vae=taef1, | |
| torch_dtype=torch.bfloat16) | |
| pipe.transformer.to(memory_format=torch.channels_last) | |
| # pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True) | |
| # pipe.enable_model_cpu_offload() | |
| clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda")) | |
| MAX_SEED = 2**32-1 | |
| def convert_to_centered_scale(num): | |
| if num <= 0: | |
| raise ValueError("Input must be a positive integer") | |
| if num % 2 == 0: # even | |
| start = -(num // 2 - 1) | |
| end = num // 2 | |
| else: # odd | |
| start = -(num // 2) | |
| end = num // 2 | |
| return tuple(range(start, end + 1)) | |
| def generate(prompt, | |
| concept_1, | |
| concept_2, | |
| scale, | |
| randomize_seed=True, | |
| seed=42, | |
| recalc_directions=True, | |
| iterations=200, | |
| steps=3, | |
| interm_steps=21, | |
| guidance_scale=3.5, | |
| x_concept_1="", x_concept_2="", | |
| avg_diff_x=None, | |
| total_images=[], | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| slider_x = [concept_2, concept_1] | |
| # check if avg diff for directions need to be re-calculated | |
| print("slider_x", slider_x) | |
| print("x_concept_1", x_concept_1, "x_concept_2", x_concept_2) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]) or recalc_directions: | |
| avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], num_iterations=iterations) | |
| x_concept_1, x_concept_2 = slider_x[0], slider_x[1] | |
| images = [] | |
| high_scale = scale | |
| low_scale = -1 * scale | |
| for i in range(interm_steps): | |
| cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1) | |
| image = clip_slider.generate(prompt, | |
| width=768, | |
| height=768, | |
| guidance_scale=guidance_scale, | |
| scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff) | |
| images.append(image) | |
| canvas = Image.new('RGB', (256*interm_steps, 256)) | |
| for i, im in enumerate(images): | |
| canvas.paste(im.resize((256,256)), (256 * i, 0)) | |
| comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}" | |
| scale_total = convert_to_centered_scale(interm_steps) | |
| scale_min = scale_total[0] | |
| scale_max = scale_total[-1] | |
| scale_middle = scale_total.index(0) | |
| post_generation_slider_update = gr.update(label=comma_concepts_x, value=0, minimum=scale_min, maximum=scale_max, interactive=True) | |
| avg_diff_x = avg_diff.cpu() | |
| return x_concept_1,x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, images[scale_middle], post_generation_slider_update, seed | |
| def update_pre_generated_images(slider_value, total_images): | |
| number_images = len(total_images) | |
| if(number_images > 0): | |
| scale_tuple = convert_to_centered_scale(number_images) | |
| return total_images[scale_tuple.index(slider_value)] | |
| else: | |
| return None | |
| def reset_recalc_directions(): | |
| return True | |
| intro = """ | |
| <div style="display: flex;align-items: center;justify-content: center"> | |
| <img src="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux/resolve/main/Group 4-16.png" width="120" style="display: inline-block"> | |
| <h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block;font-size:1.75em">Latent Navigation</h1> | |
| </div> | |
| <div style="display: flex;align-items: center;justify-content: center"> | |
| <h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Exploring CLIP text space with FLUX.1 schnell 🪐</h3> | |
| </div> | |
| <p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block"> | |
| <a href="https://github.com/linoytsaban/semantic-sliders" target="_blank">code</a> | |
| | | |
| <a href="https://huggingface.co/spaces/LatentNavigation/latentnavigation-flux?duplicate=true" target="_blank" style=" | |
| display: inline-block; | |
| "> | |
| <img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a> | |
| </p> | |
| """ | |
| css=''' | |
| #strip, #gif{max-height: 170px} | |
| ''' | |
| examples = [["a dog in the park", "winter", "summer", 1.25], ["a house", "USA suburb", "Europe", 2], ["a tomato", "rotten", "super fresh", 2]] | |
| image_seq = gr.Image(label="Strip", elem_id="strip", height=65) | |
| output_image = gr.Image(label="Gif", elem_id="gif") | |
| post_generation_image = gr.Image(label="Generated Images") | |
| post_generation_slider = gr.Slider(minimum=-10, maximum=10, value=0, step=1) | |
| seed = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, label="Seed", interactive=True, randomize=True) | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML(intro) | |
| x_concept_1 = gr.State("") | |
| x_concept_2 = gr.State("") | |
| total_images = gr.State([]) | |
| avg_diff_x = gr.State() | |
| recalc_directions = gr.State(False) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| concept_1 = gr.Textbox(label="1st direction to steer", placeholder="winter") | |
| concept_2 = gr.Textbox(label="2nd direction to steer", placeholder="summer") | |
| prompt = gr.Textbox(label="Prompt", info="Describe what you to be steered by the directions", placeholder="A dog in the park") | |
| x = gr.Slider(minimum=0, value=1.5, step=0.1, maximum=4.0, label="Strength", info="maximum strength on each direction (unstable beyond 2.5)") | |
| submit = gr.Button("Generate directions") | |
| with gr.Column(): | |
| with gr.Group(elem_id="group"): | |
| post_generation_image.render() | |
| post_generation_slider.render() | |
| with gr.Row(): | |
| with gr.Column(scale=4, min_width=50): | |
| image_seq.render() | |
| with gr.Column(scale=2, min_width=50): | |
| output_image.render() | |
| with gr.Accordion(label="Advanced options", open=False): | |
| interm_steps = gr.Slider(label = "Num of intermediate images", minimum=3, value=21, maximum=65, step=2) | |
| with gr.Row(): | |
| iterations = gr.Slider(label = "Num iterations for clip directions", minimum=0, value=200, maximum=500, step=1) | |
| steps = gr.Slider(label = "Num inference steps", minimum=1, value=3, maximum=8, step=1) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.1, | |
| maximum=10.0, | |
| step=0.1, | |
| value=3.5, | |
| ) | |
| with gr.Column(): | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed.render() | |
| examples_gradio = gr.Examples( | |
| examples=examples, | |
| inputs=[prompt, concept_1, concept_2, x], | |
| fn=generate, | |
| outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed], | |
| cache_examples="lazy" | |
| ) | |
| submit.click(fn=generate, | |
| inputs=[prompt, concept_1, concept_2, x, randomize_seed, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images], | |
| outputs=[x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_image, post_generation_slider, seed]) | |
| iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions]) | |
| seed.change(fn=reset_recalc_directions, outputs=[recalc_directions]) | |
| post_generation_slider.change(fn=update_pre_generated_images, inputs=[post_generation_slider, total_images], outputs=[post_generation_image], queue=False, show_progress="hidden", concurrency_limit=None) | |
| if __name__ == "__main__": | |
| demo.launch() |