Spaces:
Running
on
Zero
Running
on
Zero
add steps & iterations params (#2)
Browse files- add steps & iterations params (198def9bbd7c4789dc1fe7525574bb386668499c)
- Update clip_slider_pipeline.py (1efd0cb7516df60b50fe99af918beec5b3fd29f5)
- app.py +12 -10
- clip_slider_pipeline.py +14 -6
app.py
CHANGED
|
@@ -7,24 +7,24 @@ from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler, Autoen
|
|
| 7 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 8 |
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
|
| 9 |
flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.config)
|
| 10 |
-
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda")
|
| 11 |
|
| 12 |
@spaces.GPU
|
| 13 |
-
def generate(slider_x, slider_y, prompt,
|
| 14 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
| 15 |
avg_diff_x_1, avg_diff_x_2,
|
| 16 |
avg_diff_y_1, avg_diff_y_2):
|
| 17 |
|
| 18 |
# check if avg diff for directions need to be re-calculated
|
| 19 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
| 20 |
-
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1])
|
| 21 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
| 22 |
|
| 23 |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
|
| 24 |
-
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1])
|
| 25 |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
|
| 26 |
|
| 27 |
-
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=
|
| 28 |
comma_concepts_x = ', '.join(slider_x)
|
| 29 |
comma_concepts_y = ', '.join(slider_y)
|
| 30 |
|
|
@@ -36,17 +36,17 @@ def generate(slider_x, slider_y, prompt,
|
|
| 36 |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
| 37 |
|
| 38 |
@spaces.GPU
|
| 39 |
-
def update_x(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
| 40 |
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
|
| 41 |
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
|
| 42 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=
|
| 43 |
return image
|
| 44 |
|
| 45 |
@spaces.GPU
|
| 46 |
-
def update_y(x,y,prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
| 47 |
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
|
| 48 |
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
|
| 49 |
-
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=
|
| 50 |
return image
|
| 51 |
|
| 52 |
css = '''
|
|
@@ -96,10 +96,12 @@ with gr.Blocks(css=css) as demo:
|
|
| 96 |
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
| 97 |
output_image = gr.Image(elem_id="image_out")
|
| 98 |
with gr.Accordion(label="advanced options"):
|
|
|
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
submit.click(fn=generate,
|
| 102 |
-
inputs=[slider_x, slider_y, prompt, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
| 103 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
| 104 |
x.change(fn=update_x, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
| 105 |
y.change(fn=update_y, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
|
|
|
| 7 |
#vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 8 |
flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash").to("cuda", torch.float16)
|
| 9 |
flash_pipe.scheduler = EulerDiscreteScheduler.from_config(flash_pipe.scheduler.config)
|
| 10 |
+
clip_slider = CLIPSliderXL(flash_pipe, device=torch.device("cuda"))
|
| 11 |
|
| 12 |
@spaces.GPU
|
| 13 |
+
def generate(slider_x, slider_y, prompt, iterations, steps,
|
| 14 |
x_concept_1, x_concept_2, y_concept_1, y_concept_2,
|
| 15 |
avg_diff_x_1, avg_diff_x_2,
|
| 16 |
avg_diff_y_1, avg_diff_y_2):
|
| 17 |
|
| 18 |
# check if avg diff for directions need to be re-calculated
|
| 19 |
if not sorted(slider_x) == sorted([x_concept_1, x_concept_2]):
|
| 20 |
+
avg_diff = clip_slider.find_latent_direction(slider_x[0], slider_x[1], iterations=iterations)
|
| 21 |
x_concept_1, x_concept_2 = slider_x[0], slider_x[1]
|
| 22 |
|
| 23 |
if not sorted(slider_y) == sorted([y_concept_1, y_concept_2]):
|
| 24 |
+
avg_diff_2nd = clip_slider.find_latent_direction(slider_y[0], slider_y[1], iterations=iterations)
|
| 25 |
y_concept_1, y_concept_2 = slider_y[0], slider_y[1]
|
| 26 |
|
| 27 |
+
image = clip_slider.generate(prompt, scale=0, scale_2nd=0, num_inference_steps=steps, avg_diff=avg_diff, avg_diff_2nd=avg_diff_2nd)
|
| 28 |
comma_concepts_x = ', '.join(slider_x)
|
| 29 |
comma_concepts_y = ', '.join(slider_y)
|
| 30 |
|
|
|
|
| 36 |
return gr.update(label=comma_concepts_x, interactive=True),gr.update(label=comma_concepts_y, interactive=True), x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, image
|
| 37 |
|
| 38 |
@spaces.GPU
|
| 39 |
+
def update_x(x,y,prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
| 40 |
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
|
| 41 |
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
|
| 42 |
+
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
| 43 |
return image
|
| 44 |
|
| 45 |
@spaces.GPU
|
| 46 |
+
def update_y(x,y,prompt, steps, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2):
|
| 47 |
avg_diff = [avg_diff_x_1.cuda(), avg_diff_x_2.cuda()]
|
| 48 |
avg_diff_2nd = [avg_diff_y_1.cuda(), avg_diff_y_2.cuda()]
|
| 49 |
+
image = clip_slider.generate(prompt, scale=x, scale_2nd=y, num_inference_steps=steps, avg_diff=avg_diff,avg_diff_2nd=avg_diff_2nd)
|
| 50 |
return image
|
| 51 |
|
| 52 |
css = '''
|
|
|
|
| 96 |
y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
| 97 |
output_image = gr.Image(elem_id="image_out")
|
| 98 |
with gr.Accordion(label="advanced options"):
|
| 99 |
+
iterations = gr.Slider(label = "num iterations", minimum=0, value=100, maximum=300)
|
| 100 |
+
steps = gr.Slider(label = "num inference steps", minimum=1, value=8, maximum=30)
|
| 101 |
|
| 102 |
|
| 103 |
submit.click(fn=generate,
|
| 104 |
+
inputs=[slider_x, slider_y, prompt, iterations, steps, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2],
|
| 105 |
outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2, output_image])
|
| 106 |
x.change(fn=update_x, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
| 107 |
y.change(fn=update_y, inputs=[x,y, prompt, avg_diff_x_1, avg_diff_x_2, avg_diff_y_1, avg_diff_y_2], outputs=[output_image])
|
clip_slider_pipeline.py
CHANGED
|
@@ -32,17 +32,21 @@ class CLIPSlider:
|
|
| 32 |
|
| 33 |
def find_latent_direction(self,
|
| 34 |
target_word:str,
|
| 35 |
-
opposite:str
|
|
|
|
| 36 |
|
| 37 |
# lets identify a latent direction by taking differences between opposites
|
| 38 |
# target_word = "happy"
|
| 39 |
# opposite = "sad"
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
with torch.no_grad():
|
| 43 |
positives = []
|
| 44 |
negatives = []
|
| 45 |
-
for i in tqdm(range(
|
| 46 |
medium = random.choice(MEDIUMS)
|
| 47 |
subject = random.choice(SUBJECTS)
|
| 48 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
@@ -145,19 +149,23 @@ class CLIPSliderXL(CLIPSlider):
|
|
| 145 |
|
| 146 |
def find_latent_direction(self,
|
| 147 |
target_word:str,
|
| 148 |
-
opposite:str
|
|
|
|
| 149 |
|
| 150 |
# lets identify a latent direction by taking differences between opposites
|
| 151 |
# target_word = "happy"
|
| 152 |
# opposite = "sad"
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
with torch.no_grad():
|
| 156 |
positives = []
|
| 157 |
negatives = []
|
| 158 |
positives2 = []
|
| 159 |
negatives2 = []
|
| 160 |
-
for i in tqdm(range(
|
| 161 |
medium = random.choice(MEDIUMS)
|
| 162 |
subject = random.choice(SUBJECTS)
|
| 163 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
|
|
| 32 |
|
| 33 |
def find_latent_direction(self,
|
| 34 |
target_word:str,
|
| 35 |
+
opposite:str,
|
| 36 |
+
num_iterations: int = None):
|
| 37 |
|
| 38 |
# lets identify a latent direction by taking differences between opposites
|
| 39 |
# target_word = "happy"
|
| 40 |
# opposite = "sad"
|
| 41 |
|
| 42 |
+
if num_iterations is not None:
|
| 43 |
+
iterations = num_iterations
|
| 44 |
+
else:
|
| 45 |
+
iterations = self.iterations
|
| 46 |
with torch.no_grad():
|
| 47 |
positives = []
|
| 48 |
negatives = []
|
| 49 |
+
for i in tqdm(range(iterations)):
|
| 50 |
medium = random.choice(MEDIUMS)
|
| 51 |
subject = random.choice(SUBJECTS)
|
| 52 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
|
|
|
| 149 |
|
| 150 |
def find_latent_direction(self,
|
| 151 |
target_word:str,
|
| 152 |
+
opposite:str,
|
| 153 |
+
num_iterations: int = None):
|
| 154 |
|
| 155 |
# lets identify a latent direction by taking differences between opposites
|
| 156 |
# target_word = "happy"
|
| 157 |
# opposite = "sad"
|
| 158 |
+
if num_iterations is not None:
|
| 159 |
+
iterations = num_iterations
|
| 160 |
+
else:
|
| 161 |
+
iterations = self.iterations
|
| 162 |
|
| 163 |
with torch.no_grad():
|
| 164 |
positives = []
|
| 165 |
negatives = []
|
| 166 |
positives2 = []
|
| 167 |
negatives2 = []
|
| 168 |
+
for i in tqdm(range(iterations)):
|
| 169 |
medium = random.choice(MEDIUMS)
|
| 170 |
subject = random.choice(SUBJECTS)
|
| 171 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|