Spaces:
Sleeping
Sleeping
import gradio as gr | |
import subprocess | |
import os | |
import tempfile | |
import librosa | |
import librosa.display | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import scipy.ndimage | |
from pathlib import Path | |
import logging | |
import warnings | |
import shutil | |
from typing import Tuple, Optional, Dict, Any | |
# Configure matplotlib for web display | |
plt.switch_backend('Agg') | |
warnings.filterwarnings('ignore') | |
# Setup logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s - %(levelname)s - %(message)s", | |
handlers=[logging.StreamHandler()] | |
) | |
logger = logging.getLogger(__name__) | |
class AudioAnalyzer: | |
"""Core class for audio analysis with modular feature extraction methods.""" | |
def __init__(self, temp_dir: Optional[str] = None): | |
"""Initialize with a temporary directory for file storage.""" | |
self.temp_dir = Path(temp_dir or tempfile.mkdtemp()) | |
self.temp_dir.mkdir(exist_ok=True) | |
self.plot_files = [] # Track plot files for cleanup | |
logger.info(f"Initialized temporary directory: {self.temp_dir}") | |
def cleanup(self) -> None: | |
"""Remove temporary directory and plot files.""" | |
for plot_file in self.plot_files: | |
if Path(plot_file).exists(): | |
try: | |
Path(plot_file).unlink() | |
logger.info(f"Removed plot file: {plot_file}") | |
except Exception as e: | |
logger.warning(f"Failed to remove plot file {plot_file}: {str(e)}") | |
if self.temp_dir.exists(): | |
shutil.rmtree(self.temp_dir, ignore_errors=True) | |
logger.info(f"Cleaned up temporary directory: {self.temp_dir}") | |
def download_youtube_audio(self, video_url: str, progress=gr.Progress()) -> Tuple[Optional[str], str]: | |
"""Download audio from YouTube using yt-dlp.""" | |
if not video_url: | |
return None, "Please provide a valid YouTube URL" | |
progress(0.1, desc="Initializing download...") | |
output_dir = self.temp_dir / "downloaded_audio" | |
output_dir.mkdir(exist_ok=True) | |
output_file = output_dir / "audio.mp3" | |
command = [ | |
"yt-dlp", | |
"-x", | |
"--audio-format", "mp3", | |
"-o", str(output_file), | |
"--no-playlist", | |
"--restrict-filenames", | |
video_url | |
] | |
try: | |
progress(0.3, desc="Downloading audio...") | |
subprocess.run(command, check=True, capture_output=True, text=True) | |
progress(1.0, desc="Download complete!") | |
return str(output_file), f"Successfully downloaded audio: {output_file.name}" | |
except FileNotFoundError: | |
return None, "yt-dlp not found. Install it with: pip install yt-dlp" | |
except subprocess.CalledProcessError as e: | |
return None, f"Download failed: {e.stderr}" | |
except Exception as e: | |
logger.error(f"Unexpected error during download: {str(e)}") | |
return None, f"Error: {str(e)}" | |
def save_plot(self, fig, filename: str) -> Optional[str]: | |
"""Save matplotlib figure to a temporary file and verify existence.""" | |
try: | |
# Use NamedTemporaryFile to ensure persistence | |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False, dir=self.temp_dir) as tmp_file: | |
plot_path = tmp_file.name | |
fig.savefig(plot_path, dpi=300, bbox_inches='tight', format='png') | |
plt.close(fig) | |
if not Path(plot_path).exists(): | |
logger.error(f"Plot file not created: {plot_path}") | |
return None | |
self.plot_files.append(plot_path) | |
logger.info(f"Saved plot: {plot_path}") | |
return str(plot_path) | |
except Exception as e: | |
logger.error(f"Error saving plot {filename}: {str(e)}") | |
plt.close(fig) | |
return None | |
def extract_basic_features(self, audio_path: str, sr: int = 16000, max_duration: float = 60.0, | |
progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]: | |
"""Extract basic audio features and generate visualizations.""" | |
if not audio_path or not Path(audio_path).exists(): | |
return None, None, "Invalid or missing audio file" | |
try: | |
progress(0.1, desc="Loading audio...") | |
y, sr = librosa.load(audio_path, sr=sr) | |
duration = librosa.get_duration(y=y, sr=sr) | |
if duration > max_duration: | |
y = y[:int(sr * max_duration)] | |
duration = max_duration | |
progress(0.3, desc="Computing features...") | |
features: Dict[str, Any] = { | |
'duration': duration, | |
'sample_rate': sr, | |
'samples': len(y), | |
'tempo': float(librosa.beat.beat_track(y=y, sr=sr)[0]), # Convert to float | |
'mfcc': librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13), | |
'spectral_centroid': librosa.feature.spectral_centroid(y=y, sr=sr)[0], | |
'spectral_rolloff': librosa.feature.spectral_rolloff(y=y, sr=sr)[0], | |
'zero_crossing_rate': librosa.feature.zero_crossing_rate(y)[0] | |
} | |
progress(0.5, desc="Computing mel spectrogram...") | |
hop_length = 512 | |
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80) | |
S_dB = librosa.power_to_db(S_mel, ref=np.max) | |
progress(0.8, desc="Creating visualizations...") | |
fig, axes = plt.subplots(2, 2, figsize=(15, 10)) | |
time_axis = np.linspace(0, duration, len(y)) | |
axes[0, 0].plot(time_axis, y) | |
axes[0, 0].set_title('Waveform') | |
axes[0, 0].set_xlabel('Time (s)') | |
axes[0, 0].set_ylabel('Amplitude') | |
librosa.display.specshow(S_dB, sr=sr, hop_length=hop_length, | |
x_axis='time', y_axis='mel', ax=axes[0, 1]) | |
axes[0, 1].set_title('Mel Spectrogram') | |
librosa.display.specshow(features['mfcc'], sr=sr, x_axis='time', ax=axes[1, 0]) | |
axes[1, 0].set_title('MFCC') | |
times = librosa.frames_to_time(range(len(features['spectral_centroid'])), sr=sr, hop_length=hop_length) | |
axes[1, 1].plot(times, features['spectral_centroid'], label='Spectral Centroid') | |
axes[1, 1].plot(times, features['spectral_rolloff'], label='Spectral Rolloff') | |
axes[1, 1].set_title('Spectral Features') | |
axes[1, 1].set_xlabel('Time (s)') | |
axes[1, 1].legend() | |
plt.tight_layout() | |
plot_path = self.save_plot(fig, "basic_features") | |
if not plot_path: | |
return None, None, "Failed to save feature visualizations" | |
# Validate feature shapes | |
for key in ['mfcc', 'spectral_centroid', 'spectral_rolloff', 'zero_crossing_rate']: | |
if not isinstance(features[key].shape, tuple): | |
logger.error(f"Invalid shape for {key}: {features[key].shape}") | |
return None, None, f"Invalid feature shape for {key}" | |
summary = f""" | |
**Audio Summary:** | |
- Duration: {duration:.2f} seconds | |
- Sample Rate: {sr} Hz | |
- Estimated Tempo: {features['tempo']:.1f} BPM | |
- Number of Samples: {features['samples']:,} | |
**Feature Shapes:** | |
- MFCC: {features['mfcc'].shape} | |
- Spectral Centroid: {features['spectral_centroid'].shape} | |
- Spectral Rolloff: {features['spectral_rolloff'].shape} | |
- Zero Crossing Rate: {features['zero_crossing_rate'].shape} | |
""" | |
progress(1.0, desc="Analysis complete!") | |
return plot_path, summary, None | |
except Exception as e: | |
logger.error(f"Error processing audio: {str(e)}") | |
return None, None, f"Error processing audio: {str(e)}" | |
def extract_chroma_features(self, audio_path: str, sr: int = 16000, max_duration: float = 30.0, | |
progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]: | |
"""Extract and visualize enhanced chroma features.""" | |
if not audio_path or not Path(audio_path).exists(): | |
return None, None, "Invalid or missing audio file" | |
try: | |
progress(0.1, desc="Loading audio...") | |
y, sr = librosa.load(audio_path, sr=sr) | |
if len(y) > sr * max_duration: | |
y = y[:int(sr * max_duration)] | |
progress(0.3, desc="Computing chroma variants...") | |
chroma_orig = librosa.feature.chroma_cqt(y=y, sr=sr) | |
y_harm = librosa.effects.harmonic(y=y, margin=8) | |
chroma_harm = librosa.feature.chroma_cqt(y=y_harm, sr=sr) | |
chroma_filter = np.minimum(chroma_harm, | |
librosa.decompose.nn_filter(chroma_harm, | |
aggregate=np.median, | |
metric='cosine')) | |
chroma_smooth = scipy.ndimage.median_filter(chroma_filter, size=(1, 9)) | |
chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr) | |
chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr) | |
progress(0.8, desc="Creating visualizations...") | |
fig, axes = plt.subplots(3, 2, figsize=(15, 12)) | |
axes = axes.flatten() | |
for i, (chroma, title) in enumerate([ | |
(chroma_orig, 'Original Chroma (CQT)'), | |
(chroma_harm, 'Harmonic Chroma'), | |
(chroma_filter, 'Non-local Filtered'), | |
(chroma_smooth, 'Median Filtered'), | |
(chroma_stft, 'Chroma (STFT)'), | |
(chroma_cens, 'CENS Features') | |
]): | |
librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=axes[i]) | |
axes[i].set_title(title) | |
plt.tight_layout() | |
plot_path = self.save_plot(fig, "chroma_features") | |
if not plot_path: | |
return None, None, "Failed to save chroma visualizations" | |
summary = "Chroma feature analysis complete! Visualizations show different chroma extraction methods for harmonic analysis." | |
progress(1.0, desc="Chroma analysis complete!") | |
return plot_path, summary, None | |
except Exception as e: | |
logger.error(f"Error processing chroma features: {str(e)}") | |
return None, None, f"Error processing chroma features: {str(e)}" | |
def generate_patches(self, audio_path: str, sr: int = 16000, patch_duration: float = 5.0, | |
hop_duration: float = 1.0, progress=gr.Progress()) -> Tuple[Optional[str], Optional[str], Optional[str]]: | |
"""Generate fixed-duration patches for transformer input.""" | |
if not audio_path or not Path(audio_path).exists(): | |
return None, None, "Invalid or missing audio file" | |
try: | |
progress(0.1, desc="Loading audio...") | |
y, sr = librosa.load(audio_path, sr=sr) | |
progress(0.3, desc="Computing mel spectrogram...") | |
hop_length = 512 | |
S_mel = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length, n_mels=80) | |
S_dB = librosa.power_to_db(S_mel, ref=np.max) | |
progress(0.5, desc="Generating patches...") | |
patch_frames = librosa.time_to_frames(patch_duration, sr=sr, hop_length=hop_length) | |
hop_frames = librosa.time_to_frames(hop_duration, sr=sr, hop_length=hop_length) | |
patches = librosa.util.frame(S_dB, frame_length=patch_frames, hop_length=hop_frames) | |
progress(0.8, desc="Creating visualizations...") | |
num_patches_to_show = min(6, patches.shape[-1]) | |
fig, axes = plt.subplots(2, 3, figsize=(18, 8)) | |
axes = axes.flatten() | |
for i in range(num_patches_to_show): | |
librosa.display.specshow(patches[..., i], y_axis='mel', x_axis='time', | |
ax=axes[i], sr=sr, hop_length=hop_length) | |
axes[i].set_title(f'Patch {i+1}') | |
for i in range(num_patches_to_show, len(axes)): | |
axes[i].set_visible(False) | |
plt.tight_layout() | |
plot_path = self.save_plot(fig, "patches") | |
if not plot_path: | |
return None, None, "Failed to save patch visualizations" | |
summary = f""" | |
**Patch Generation Summary:** | |
- Total patches generated: {patches.shape[-1]} | |
- Patch duration: {patch_duration:.1f} seconds | |
- Hop duration: {hop_duration:.1f} seconds | |
- Patch shape (mels, time, patches): {patches.shape} | |
- Each patch covers {patch_frames} time frames | |
""" | |
progress(1.0, desc="Patch generation complete!") | |
return plot_path, summary, None | |
except Exception as e: | |
logger.error(f"Error generating patches: {str(e)}") | |
return None, None, f"Error generating patches: {str(e)}" | |
def create_gradio_interface() -> gr.Blocks: | |
"""Create a modular Gradio interface for audio analysis.""" | |
analyzer = AudioAnalyzer() | |
with gr.Blocks(title="π΅ Audio Analysis Suite", theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# π΅ Audio Analysis Suite | |
Analyze audio from YouTube videos or uploaded files. Extract features or generate transformer patches for deep learning applications. | |
**Features:** | |
- π **Basic Features**: Waveform, Mel Spectrogram, MFCC, Spectral Analysis, Tempo Detection | |
- πΌ **Chroma Features**: Harmonic content analysis with multiple extraction methods | |
- π§© **Transformer Patches**: Fixed-duration patches for deep learning | |
**Requirements**: Dependencies are automatically installed in Hugging Face Spaces via `requirements.txt`. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("### π Audio Input") | |
with gr.Group(): | |
gr.Markdown("**Download from YouTube** (Supported formats: MP3, WAV, etc.)") | |
youtube_url = gr.Textbox( | |
label="YouTube URL", | |
placeholder="https://www.youtube.com/watch?v=...", | |
) | |
download_btn = gr.Button("π₯ Download Audio", variant="primary") | |
download_status = gr.Textbox(label="Download Status", interactive=False) | |
with gr.Group(): | |
gr.Markdown("**Or upload audio file** (Supported formats: MP3, WAV, FLAC, etc.)") | |
audio_file = gr.Audio( | |
label="Upload Audio File", | |
type="filepath", | |
) | |
with gr.Column(scale=2): | |
gr.Markdown("### π Analysis Results") | |
with gr.Tabs(): | |
with gr.Tab("π Basic Features"): | |
basic_plot = gr.Image(label="Feature Visualizations") | |
basic_summary = gr.Markdown(label="Feature Summary") | |
basic_btn = gr.Button("π Analyze Basic Features", variant="secondary") | |
with gr.Tab("πΌ Chroma Features"): | |
chroma_plot = gr.Image(label="Chroma Visualizations") | |
chroma_summary = gr.Markdown(label="Chroma Summary") | |
chroma_btn = gr.Button("πΌ Analyze Chroma Features", variant="secondary") | |
with gr.Tab("π§© Transformer Patches"): | |
with gr.Row(): | |
patch_duration = gr.Slider( | |
label="Patch Duration (seconds)", | |
minimum=1.0, maximum=10.0, value=5.0, step=0.5, | |
) | |
hop_duration = gr.Slider( | |
label="Hop Duration (seconds)", | |
minimum=0.1, maximum=5.0, value=1.0, step=0.1, | |
) | |
patches_plot = gr.Image(label="Generated Patches") | |
patches_summary = gr.Markdown(label="Patch Summary") | |
patches_btn = gr.Button("π§© Generate Patches", variant="secondary") | |
error_output = gr.Textbox(label="Error Messages", interactive=False) | |
gr.Markdown(""" | |
### βΉοΈ Usage Tips | |
- **Processing Limits**: 60s for basic features, 30s for chroma features for fast response | |
- **YouTube Downloads**: Ensure URLs are valid and respect YouTube's terms of service | |
- **Visualizations**: High-quality, suitable for research and education | |
- **Storage**: Temporary files are cleaned up when the interface closes | |
- **Support**: For issues, check the [GitHub repository](https://github.com/your-repo) | |
""") | |
# Event handlers | |
download_btn.click( | |
fn=analyzer.download_youtube_audio, | |
inputs=[youtube_url], | |
outputs=[audio_file, download_status] | |
) | |
basic_btn.click( | |
fn=analyzer.extract_basic_features, | |
inputs=[audio_file], | |
outputs=[basic_plot, basic_summary, error_output] | |
) | |
chroma_btn.click( | |
fn=analyzer.extract_chroma_features, | |
inputs=[audio_file], | |
outputs=[chroma_plot, chroma_summary, error_output] | |
) | |
patches_btn.click( | |
fn=analyzer.generate_patches, | |
inputs=[audio_file, patch_duration, hop_duration], | |
outputs=[patches_plot, patches_summary, error_output] | |
) | |
audio_file.change( | |
fn=analyzer.extract_basic_features, | |
inputs=[audio_file], | |
outputs=[basic_plot, basic_summary, error_output] | |
) | |
demo.unload(fn=analyzer.cleanup) | |
return demo | |
if __name__ == "__main__": | |
demo = create_gradio_interface() | |
demo.launch() |