AgentZero / agent.py
lattmamb's picture
Upload 377 files
301a0ac verified
import asyncio
from collections import OrderedDict
from dataclasses import dataclass, field
from datetime import datetime
import json
from typing import Any, Awaitable, Coroutine, Optional, Dict, TypedDict
import uuid
import models
from python.helpers import extract_tools, rate_limiter, files, errors, history, tokens
from python.helpers import dirty_json
from python.helpers.print_style import PrintStyle
from langchain_core.prompts import (
ChatPromptTemplate,
)
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage, BaseMessage
import python.helpers.log as Log
from python.helpers.dirty_json import DirtyJson
from python.helpers.defer import DeferredTask
from typing import Callable
from python.helpers.localization import Localization
class AgentContext:
_contexts: dict[str, "AgentContext"] = {}
_counter: int = 0
def __init__(
self,
config: "AgentConfig",
id: str | None = None,
name: str | None = None,
agent0: "Agent|None" = None,
log: Log.Log | None = None,
paused: bool = False,
streaming_agent: "Agent|None" = None,
created_at: datetime | None = None,
):
# build context
self.id = id or str(uuid.uuid4())
self.name = name
self.config = config
self.log = log or Log.Log()
self.agent0 = agent0 or Agent(0, self.config, self)
self.paused = paused
self.streaming_agent = streaming_agent
self.task: DeferredTask | None = None
self.created_at = created_at or datetime.now()
AgentContext._counter += 1
self.no = AgentContext._counter
existing = self._contexts.get(self.id, None)
if existing:
AgentContext.remove(self.id)
self._contexts[self.id] = self
@staticmethod
def get(id: str):
return AgentContext._contexts.get(id, None)
@staticmethod
def first():
if not AgentContext._contexts:
return None
return list(AgentContext._contexts.values())[0]
@staticmethod
def remove(id: str):
context = AgentContext._contexts.pop(id, None)
if context and context.task:
context.task.kill()
return context
def serialize(self):
return {
"id": self.id,
"name": self.name,
"created_at": (
Localization.get().serialize_datetime(self.created_at)
if self.created_at else Localization.get().serialize_datetime(datetime.fromtimestamp(0))
),
"no": self.no,
"log_guid": self.log.guid,
"log_version": len(self.log.updates),
"log_length": len(self.log.logs),
"paused": self.paused,
}
def get_created_at(self):
return self.created_at
def kill_process(self):
if self.task:
self.task.kill()
def reset(self):
self.kill_process()
self.log.reset()
self.agent0 = Agent(0, self.config, self)
self.streaming_agent = None
self.paused = False
def nudge(self):
self.kill_process()
self.paused = False
if self.streaming_agent:
current_agent = self.streaming_agent
else:
current_agent = self.agent0
self.task = self.run_task(current_agent.monologue)
return self.task
def communicate(self, msg: "UserMessage", broadcast_level: int = 1):
self.paused = False # unpause if paused
if self.streaming_agent:
current_agent = self.streaming_agent
else:
current_agent = self.agent0
if self.task and self.task.is_alive():
# set intervention messages to agent(s):
intervention_agent = current_agent
while intervention_agent and broadcast_level != 0:
intervention_agent.intervention = msg
broadcast_level -= 1
intervention_agent = intervention_agent.data.get(
Agent.DATA_NAME_SUPERIOR, None
)
else:
self.task = self.run_task(self._process_chain, current_agent, msg)
return self.task
def run_task(
self, func: Callable[..., Coroutine[Any, Any, Any]], *args: Any, **kwargs: Any
):
if not self.task:
self.task = DeferredTask(
thread_name=self.__class__.__name__,
)
self.task.start_task(func, *args, **kwargs)
return self.task
# this wrapper ensures that superior agents are called back if the chat was loaded from file and original callstack is gone
async def _process_chain(self, agent: "Agent", msg: "UserMessage|str", user=True):
try:
msg_template = (
agent.hist_add_user_message(msg) # type: ignore
if user
else agent.hist_add_tool_result(
tool_name="call_subordinate", tool_result=msg # type: ignore
)
)
response = await agent.monologue() # type: ignore
superior = agent.data.get(Agent.DATA_NAME_SUPERIOR, None)
if superior:
response = await self._process_chain(superior, response, False) # type: ignore
return response
except Exception as e:
agent.handle_critical_exception(e)
@dataclass
class ModelConfig:
provider: models.ModelProvider
name: str
ctx_length: int = 0
limit_requests: int = 0
limit_input: int = 0
limit_output: int = 0
vision: bool = False
kwargs: dict = field(default_factory=dict)
@dataclass
class AgentConfig:
chat_model: ModelConfig
utility_model: ModelConfig
embeddings_model: ModelConfig
browser_model: ModelConfig
prompts_subdir: str = ""
memory_subdir: str = ""
knowledge_subdirs: list[str] = field(default_factory=lambda: ["default", "custom"])
code_exec_docker_enabled: bool = False
code_exec_docker_name: str = "A0-dev"
code_exec_docker_image: str = "frdel/agent-zero-run:development"
code_exec_docker_ports: dict[str, int] = field(
default_factory=lambda: {"22/tcp": 55022, "80/tcp": 55080}
)
code_exec_docker_volumes: dict[str, dict[str, str]] = field(
default_factory=lambda: {
files.get_base_dir(): {"bind": "/a0", "mode": "rw"},
files.get_abs_path("work_dir"): {"bind": "/root", "mode": "rw"},
}
)
code_exec_ssh_enabled: bool = True
code_exec_ssh_addr: str = "localhost"
code_exec_ssh_port: int = 55022
code_exec_ssh_user: str = "root"
code_exec_ssh_pass: str = ""
additional: Dict[str, Any] = field(default_factory=dict)
@dataclass
class UserMessage:
message: str
attachments: list[str] = field(default_factory=list[str])
system_message: list[str] = field(default_factory=list[str])
class LoopData:
def __init__(self, **kwargs):
self.iteration = -1
self.system = []
self.user_message: history.Message | None = None
self.history_output: list[history.OutputMessage] = []
self.extras_temporary: OrderedDict[str, history.MessageContent] = OrderedDict()
self.extras_persistent: OrderedDict[str, history.MessageContent] = OrderedDict()
self.last_response = ""
# override values with kwargs
for key, value in kwargs.items():
setattr(self, key, value)
# intervention exception class - skips rest of message loop iteration
class InterventionException(Exception):
pass
# killer exception class - not forwarded to LLM, cannot be fixed on its own, ends message loop
class RepairableException(Exception):
pass
class HandledException(Exception):
pass
class Agent:
DATA_NAME_SUPERIOR = "_superior"
DATA_NAME_SUBORDINATE = "_subordinate"
DATA_NAME_CTX_WINDOW = "ctx_window"
def __init__(
self, number: int, config: AgentConfig, context: AgentContext | None = None
):
# agent config
self.config = config
# agent context
self.context = context or AgentContext(config)
# non-config vars
self.number = number
self.agent_name = f"Agent {self.number}"
self.history = history.History(self)
self.last_user_message: history.Message | None = None
self.intervention: UserMessage | None = None
self.data = {} # free data object all the tools can use
async def monologue(self):
while True:
try:
# loop data dictionary to pass to extensions
self.loop_data = LoopData(user_message=self.last_user_message)
# call monologue_start extensions
await self.call_extensions("monologue_start", loop_data=self.loop_data)
printer = PrintStyle(italic=True, font_color="#b3ffd9", padding=False)
# let the agent run message loop until he stops it with a response tool
while True:
self.context.streaming_agent = self # mark self as current streamer
self.loop_data.iteration += 1
# call message_loop_start extensions
await self.call_extensions("message_loop_start", loop_data=self.loop_data)
try:
# prepare LLM chain (model, system, history)
prompt = await self.prepare_prompt(loop_data=self.loop_data)
# output that the agent is starting
PrintStyle(
bold=True,
font_color="green",
padding=True,
background_color="white",
).print(f"{self.agent_name}: Generating")
log = self.context.log.log(
type="agent", heading=f"{self.agent_name}: Generating"
)
async def stream_callback(chunk: str, full: str):
# output the agent response stream
if chunk:
printer.stream(chunk)
self.log_from_stream(full, log)
agent_response = await self.call_chat_model(
prompt, callback=stream_callback
) # type: ignore
await self.handle_intervention(agent_response)
if (
self.loop_data.last_response == agent_response
): # if assistant_response is the same as last message in history, let him know
# Append the assistant's response to the history
self.hist_add_ai_response(agent_response)
# Append warning message to the history
warning_msg = self.read_prompt("fw.msg_repeat.md")
self.hist_add_warning(message=warning_msg)
PrintStyle(font_color="orange", padding=True).print(
warning_msg
)
self.context.log.log(type="warning", content=warning_msg)
else: # otherwise proceed with tool
# Append the assistant's response to the history
self.hist_add_ai_response(agent_response)
# process tools requested in agent message
tools_result = await self.process_tools(agent_response)
if tools_result: # final response of message loop available
return tools_result # break the execution if the task is done
# exceptions inside message loop:
except InterventionException as e:
pass # intervention message has been handled in handle_intervention(), proceed with conversation loop
except RepairableException as e:
# Forward repairable errors to the LLM, maybe it can fix them
error_message = errors.format_error(e)
self.hist_add_warning(error_message)
PrintStyle(font_color="red", padding=True).print(error_message)
self.context.log.log(type="error", content=error_message)
except Exception as e:
# Other exception kill the loop
self.handle_critical_exception(e)
finally:
# call message_loop_end extensions
await self.call_extensions(
"message_loop_end", loop_data=self.loop_data
)
# exceptions outside message loop:
except InterventionException as e:
pass # just start over
except Exception as e:
self.handle_critical_exception(e)
finally:
self.context.streaming_agent = None # unset current streamer
# call monologue_end extensions
await self.call_extensions("monologue_end", loop_data=self.loop_data) # type: ignore
async def prepare_prompt(self, loop_data: LoopData) -> ChatPromptTemplate:
# call extensions before setting prompts
await self.call_extensions("message_loop_prompts_before", loop_data=loop_data)
# set system prompt and message history
loop_data.system = await self.get_system_prompt(self.loop_data)
loop_data.history_output = self.history.output()
# and allow extensions to edit them
await self.call_extensions("message_loop_prompts_after", loop_data=loop_data)
# extras (memory etc.)
# extras: list[history.OutputMessage] = []
# for extra in loop_data.extras_persistent.values():
# extras += history.Message(False, content=extra).output()
# for extra in loop_data.extras_temporary.values():
# extras += history.Message(False, content=extra).output()
extras = history.Message(
False,
content=self.read_prompt("agent.context.extras.md", extras=dirty_json.stringify(
{**loop_data.extras_persistent, **loop_data.extras_temporary}
))).output()
loop_data.extras_temporary.clear()
# convert history + extras to LLM format
history_langchain: list[BaseMessage] = history.output_langchain(
loop_data.history_output + extras
)
# build chain from system prompt, message history and model
system_text = "\n\n".join(loop_data.system)
prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(content=system_text),
*history_langchain,
# AIMessage(content="JSON:"), # force the LLM to start with json
]
)
# store as last context window content
self.set_data(
Agent.DATA_NAME_CTX_WINDOW,
{
"text": prompt.format(),
"tokens": self.history.get_tokens()
+ tokens.approximate_tokens(system_text)
+ tokens.approximate_tokens(history.output_text(extras)),
},
)
return prompt
def handle_critical_exception(self, exception: Exception):
if isinstance(exception, HandledException):
raise exception # Re-raise the exception to kill the loop
elif isinstance(exception, asyncio.CancelledError):
# Handling for asyncio.CancelledError
PrintStyle(font_color="white", background_color="red", padding=True).print(
f"Context {self.context.id} terminated during message loop"
)
raise HandledException(
exception
) # Re-raise the exception to cancel the loop
else:
# Handling for general exceptions
error_text = errors.error_text(exception)
error_message = errors.format_error(exception)
PrintStyle(font_color="red", padding=True).print(error_message)
self.context.log.log(
type="error",
heading="Error",
content=error_message,
kvps={"text": error_text},
)
raise HandledException(exception) # Re-raise the exception to kill the loop
async def get_system_prompt(self, loop_data: LoopData) -> list[str]:
system_prompt = []
await self.call_extensions(
"system_prompt", system_prompt=system_prompt, loop_data=loop_data
)
return system_prompt
def parse_prompt(self, file: str, **kwargs):
prompt_dir = files.get_abs_path("prompts/default")
backup_dir = []
if (
self.config.prompts_subdir
): # if agent has custom folder, use it and use default as backup
prompt_dir = files.get_abs_path("prompts", self.config.prompts_subdir)
backup_dir.append(files.get_abs_path("prompts/default"))
prompt = files.parse_file(
files.get_abs_path(prompt_dir, file), _backup_dirs=backup_dir, **kwargs
)
return prompt
def read_prompt(self, file: str, **kwargs) -> str:
prompt_dir = files.get_abs_path("prompts/default")
backup_dir = []
if (
self.config.prompts_subdir
): # if agent has custom folder, use it and use default as backup
prompt_dir = files.get_abs_path("prompts", self.config.prompts_subdir)
backup_dir.append(files.get_abs_path("prompts/default"))
prompt = files.read_file(
files.get_abs_path(prompt_dir, file), _backup_dirs=backup_dir, **kwargs
)
prompt = files.remove_code_fences(prompt)
return prompt
def get_data(self, field: str):
return self.data.get(field, None)
def set_data(self, field: str, value):
self.data[field] = value
def hist_add_message(
self, ai: bool, content: history.MessageContent, tokens: int = 0
):
return self.history.add_message(ai=ai, content=content, tokens=tokens)
def hist_add_user_message(self, message: UserMessage, intervention: bool = False):
self.history.new_topic() # user message starts a new topic in history
# load message template based on intervention
if intervention:
content = self.parse_prompt(
"fw.intervention.md",
message=message.message,
attachments=message.attachments,
system_message=message.system_message
)
else:
content = self.parse_prompt(
"fw.user_message.md",
message=message.message,
attachments=message.attachments,
system_message=message.system_message
)
# remove empty parts from template
if isinstance(content, dict):
content = {k: v for k, v in content.items() if v}
# add to history
msg = self.hist_add_message(False, content=content) # type: ignore
self.last_user_message = msg
return msg
def hist_add_ai_response(self, message: str):
self.loop_data.last_response = message
content = self.parse_prompt("fw.ai_response.md", message=message)
return self.hist_add_message(True, content=content)
def hist_add_warning(self, message: history.MessageContent):
content = self.parse_prompt("fw.warning.md", message=message)
return self.hist_add_message(False, content=content)
def hist_add_tool_result(self, tool_name: str, tool_result: str):
content = self.parse_prompt(
"fw.tool_result.md", tool_name=tool_name, tool_result=tool_result
)
return self.hist_add_message(False, content=content)
def concat_messages(
self, messages
): # TODO add param for message range, topic, history
return self.history.output_text(human_label="user", ai_label="assistant")
def get_chat_model(self):
return models.get_model(
models.ModelType.CHAT,
self.config.chat_model.provider,
self.config.chat_model.name,
**self.config.chat_model.kwargs,
)
def get_utility_model(self):
return models.get_model(
models.ModelType.CHAT,
self.config.utility_model.provider,
self.config.utility_model.name,
**self.config.utility_model.kwargs,
)
def get_embedding_model(self):
return models.get_model(
models.ModelType.EMBEDDING,
self.config.embeddings_model.provider,
self.config.embeddings_model.name,
**self.config.embeddings_model.kwargs,
)
async def call_utility_model(
self,
system: str,
message: str,
callback: Callable[[str], Awaitable[None]] | None = None,
background: bool = False,
):
prompt = ChatPromptTemplate.from_messages(
[SystemMessage(content=system), HumanMessage(content=message)]
)
response = ""
# model class
model = self.get_utility_model()
# rate limiter
limiter = await self.rate_limiter(
self.config.utility_model, prompt.format(), background
)
async for chunk in (prompt | model).astream({}):
await self.handle_intervention() # wait for intervention and handle it, if paused
content = models.parse_chunk(chunk)
limiter.add(output=tokens.approximate_tokens(content))
response += content
if callback:
await callback(content)
return response
async def call_chat_model(
self,
prompt: ChatPromptTemplate,
callback: Callable[[str, str], Awaitable[None]] | None = None,
):
response = ""
# model class
model = self.get_chat_model()
# rate limiter
limiter = await self.rate_limiter(self.config.chat_model, prompt.format())
async for chunk in (prompt | model).astream({}):
await self.handle_intervention() # wait for intervention and handle it, if paused
content = models.parse_chunk(chunk)
limiter.add(output=tokens.approximate_tokens(content))
response += content
if callback:
await callback(content, response)
return response
async def rate_limiter(
self, model_config: ModelConfig, input: str, background: bool = False
):
# rate limiter log
wait_log = None
async def wait_callback(msg: str, key: str, total: int, limit: int):
nonlocal wait_log
if not wait_log:
wait_log = self.context.log.log(
type="util",
update_progress="none",
heading=msg,
model=f"{model_config.provider.value}\\{model_config.name}",
)
wait_log.update(heading=msg, key=key, value=total, limit=limit)
if not background:
self.context.log.set_progress(msg, -1)
# rate limiter
limiter = models.get_rate_limiter(
model_config.provider,
model_config.name,
model_config.limit_requests,
model_config.limit_input,
model_config.limit_output,
)
limiter.add(input=tokens.approximate_tokens(input))
limiter.add(requests=1)
await limiter.wait(callback=wait_callback)
return limiter
async def handle_intervention(self, progress: str = ""):
while self.context.paused:
await asyncio.sleep(0.1) # wait if paused
if (
self.intervention
): # if there is an intervention message, but not yet processed
msg = self.intervention
self.intervention = None # reset the intervention message
if progress.strip():
self.hist_add_ai_response(progress)
# append the intervention message
self.hist_add_user_message(msg, intervention=True)
raise InterventionException(msg)
async def wait_if_paused(self):
while self.context.paused:
await asyncio.sleep(0.1)
async def process_tools(self, msg: str):
# search for tool usage requests in agent message
tool_request = extract_tools.json_parse_dirty(msg)
if tool_request is not None:
tool_name = tool_request.get("tool_name", "")
tool_method = None
tool_args = tool_request.get("tool_args", {})
if ":" in tool_name:
tool_name, tool_method = tool_name.split(":", 1)
tool = self.get_tool(name=tool_name, method=tool_method, args=tool_args, message=msg)
await self.handle_intervention() # wait if paused and handle intervention message if needed
await tool.before_execution(**tool_args)
await self.handle_intervention() # wait if paused and handle intervention message if needed
response = await tool.execute(**tool_args)
await self.handle_intervention() # wait if paused and handle intervention message if needed
await tool.after_execution(response)
await self.handle_intervention() # wait if paused and handle intervention message if needed
if response.break_loop:
return response.message
else:
msg = self.read_prompt("fw.msg_misformat.md")
self.hist_add_warning(msg)
PrintStyle(font_color="red", padding=True).print(msg)
self.context.log.log(
type="error", content=f"{self.agent_name}: Message misformat"
)
def log_from_stream(self, stream: str, logItem: Log.LogItem):
try:
if len(stream) < 25:
return # no reason to try
response = DirtyJson.parse_string(stream)
if isinstance(response, dict):
# log if result is a dictionary already
logItem.update(content=stream, kvps=response)
except Exception as e:
pass
def get_tool(self, name: str, method: str | None, args: dict, message: str, **kwargs):
from python.tools.unknown import Unknown
from python.helpers.tool import Tool
classes = extract_tools.load_classes_from_folder(
"python/tools", name + ".py", Tool
)
tool_class = classes[0] if classes else Unknown
return tool_class(agent=self, name=name, method=method, args=args, message=message, **kwargs)
async def call_extensions(self, folder: str, **kwargs) -> Any:
from python.helpers.extension import Extension
classes = extract_tools.load_classes_from_folder(
"python/extensions/" + folder, "*", Extension
)
for cls in classes:
await cls(agent=self).execute(**kwargs)