Spaces:
Runtime error
Runtime error
File size: 8,081 Bytes
8beb2b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import os
import logging
from flask import Flask, render_template, request, jsonify, flash, redirect, url_for
import spacy
from flask_sqlalchemy import SQLAlchemy
from sqlalchemy.orm import DeclarativeBase
from nlp_processor import process_text
from quantum_thinking import quantum_recursive_thinking
from openai_integration import generate_completion
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Create the base class for SQLAlchemy models
class Base(DeclarativeBase):
pass
# Initialize SQLAlchemy
db = SQLAlchemy(model_class=Base)
# Create Flask app
app = Flask(__name__)
app.secret_key = os.environ.get("SESSION_SECRET")
# Configure database
app.config["SQLALCHEMY_DATABASE_URI"] = os.environ.get("DATABASE_URL")
app.config["SQLALCHEMY_ENGINE_OPTIONS"] = {
"pool_recycle": 300,
"pool_pre_ping": True,
}
# Initialize the extensions
db.init_app(app)
# Import models and create database tables
with app.app_context():
import models # This has to be imported after db is initialized
db.create_all()
# Initialize the task scheduler
from task_scheduler import scheduler
scheduler.start()
logger.info("Database tables created and task scheduler started")
# Load spaCy model (English)
try:
nlp = spacy.load("en_core_web_sm")
logger.info("Successfully loaded spaCy English model")
except OSError:
logger.warning("Downloading spaCy model...")
logger.warning("Please run: python -m spacy download en_core_web_sm")
# Fallback: use a smaller model
try:
nlp = spacy.load("en")
except:
logger.error("Failed to load spaCy model. Using blank model.")
nlp = spacy.blank("en")
@app.route('/')
def index():
return render_template('index.html')
@app.route('/settings')
def settings():
"""Settings page with user preferences for the application."""
api_key = os.environ.get("OPENAI_API_KEY", "")
api_key_masked = "••••••••" + api_key[-4:] if api_key else ""
api_key_status = bool(api_key)
ai_model = "gpt-4o" # Default to the newest model
return render_template(
'settings.html',
api_key_masked=api_key_masked,
api_key_status=api_key_status,
ai_model=ai_model
)
@app.route('/zap-integrations')
def zap_integrations():
integrations = [
{
"name": "OpenAI Connector",
"description": "Connect the quantum framework to OpenAI's GPT models",
"icon": "fa-robot",
"status": "active" if os.environ.get("OPENAI_API_KEY") else "inactive"
},
{
"name": "Language Processing Pipeline",
"description": "NLP processing workflow with quantum enhancement",
"icon": "fa-code-branch",
"status": "active"
},
{
"name": "Quantum Discord Notifier",
"description": "Send multi-dimensional analysis results to Discord",
"icon": "fa-bell",
"status": "pending"
},
{
"name": "JSON Export Automation",
"description": "Export quantum thinking results to JSON format",
"icon": "fa-file-export",
"status": "active"
},
{
"name": "Email Summarization",
"description": "Generate quantum-enhanced summaries of emails",
"icon": "fa-envelope",
"status": "pending"
}
]
return render_template('zap_integrations.html', integrations=integrations)
@app.route('/automation-workflow')
def automation_workflow():
workflow_steps = [
{
"id": 1,
"name": "Text Input",
"description": "User enters text for quantum processing",
"status": "completed",
"color": "#da4b86"
},
{
"id": 2,
"name": "NLP Processing",
"description": "Initial language processing with spaCy",
"status": "completed",
"color": "#6f42c1"
},
{
"id": 3,
"name": "Quantum Thinking",
"description": "Multi-dimensional recursive thinking algorithm",
"status": "active",
"color": "#0dcaf0"
},
{
"id": 4,
"name": "Pattern Recognition",
"description": "Identifying patterns across quantum dimensions",
"status": "pending",
"color": "#6f42c1"
},
{
"id": 5,
"name": "Response Generation",
"description": "Creating AI response with quantum insights",
"status": "pending",
"color": "#da4b86"
}
]
return render_template('automation_workflow.html', workflow_steps=workflow_steps)
@app.route('/process', methods=['POST'])
def process():
try:
input_text = request.form.get('input_text', '')
if not input_text:
flash('Please enter some text to process', 'warning')
return redirect(url_for('index'))
# Process with NLP
nlp_results = process_text(nlp, input_text)
# Process with quantum-inspired recursive thinking
depth = int(request.form.get('depth', 3))
quantum_results = quantum_recursive_thinking(input_text, depth)
# Generate OpenAI completion
use_ai = request.form.get('use_ai') == 'on'
ai_response = None
if use_ai:
try:
ai_response = generate_completion(input_text, quantum_results)
except Exception as e:
logger.error(f"OpenAI API error: {str(e)}")
flash(f"Error with OpenAI API: {str(e)}", 'danger')
return render_template(
'index.html',
input_text=input_text,
nlp_results=nlp_results,
quantum_results=quantum_results,
ai_response=ai_response,
depth=depth
)
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
flash(f"An error occurred: {str(e)}", 'danger')
return redirect(url_for('index'))
@app.route('/save-api-key', methods=['POST'])
def save_api_key():
"""Save OpenAI API key."""
api_key = request.form.get('api_key', '')
ai_model = request.form.get('ai_model', 'gpt-4o')
# For a production app, we would need to securely store this API key
# For this demo, we will just flash a message
if api_key:
flash('API key settings updated successfully!', 'success')
else:
flash('API key has been cleared.', 'warning')
return redirect(url_for('settings'))
@app.route('/api/process', methods=['POST'])
def api_process():
try:
data = request.get_json()
input_text = data.get('input_text', '')
depth = data.get('depth', 3)
use_ai = data.get('use_ai', False)
if not input_text:
return jsonify({'error': 'No input text provided'}), 400
# Process with NLP
nlp_results = process_text(nlp, input_text)
# Process with quantum-inspired recursive thinking
quantum_results = quantum_recursive_thinking(input_text, depth)
# Generate OpenAI completion
ai_response = None
if use_ai:
try:
ai_response = generate_completion(input_text, quantum_results)
except Exception as e:
logger.error(f"OpenAI API error: {str(e)}")
return jsonify({'error': f'OpenAI API error: {str(e)}'}), 500
return jsonify({
'nlp_results': nlp_results,
'quantum_results': quantum_results,
'ai_response': ai_response
})
except Exception as e:
logger.error(f"API Error: {str(e)}")
return jsonify({'error': str(e)}), 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000, debug=True)
|