Andrii Fedorenko
commited on
Commit
·
8d3334b
1
Parent(s):
1c73aa0
Implement OCR functionality with Gradio interface and model downloads
Browse files- app.py +51 -4
- requirements.txt +7 -0
app.py
CHANGED
@@ -1,7 +1,54 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import onnxruntime as ort
|
5 |
+
import os
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
+
# Function to download model files from Hugging Face
|
9 |
+
def download_model_files():
|
10 |
+
model_repo = "SWHL/RapidOCR"
|
11 |
+
det_model_filename = "PP-OCRv4/en_PP-OCRv3_det_infer.onnx"
|
12 |
+
rec_model_filename = "PP-OCRv4/ch_PP-OCRv4_rec_server_infer.onnx"
|
13 |
+
cls_model_filename = "PP-OCRv3/ch_ppocr_mobile_v2.0_cls_train.onnx"
|
14 |
|
15 |
+
det_model_path = hf_hub_download(repo_id=model_repo, filename=det_model_filename)
|
16 |
+
rec_model_path = hf_hub_download(repo_id=model_repo, filename=rec_model_filename)
|
17 |
+
cls_model_path = hf_hub_download(repo_id=model_repo, filename=cls_model_filename)
|
18 |
+
|
19 |
+
return det_model_path, rec_model_path, cls_model_path
|
20 |
+
|
21 |
+
# Download model files
|
22 |
+
det_model_path, rec_model_path, cls_model_path = download_model_files()
|
23 |
+
|
24 |
+
# Load models
|
25 |
+
det_session = ort.InferenceSession(det_model_path)
|
26 |
+
rec_session = ort.InferenceSession(rec_model_path)
|
27 |
+
cls_session = ort.InferenceSession(cls_model_path)
|
28 |
+
|
29 |
+
def preprocess_image(image):
|
30 |
+
# Convert to grayscale
|
31 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
32 |
+
# Resize or pad image to desired size if necessary
|
33 |
+
return gray
|
34 |
+
|
35 |
+
def ocr_predict(image):
|
36 |
+
# Preprocess the image
|
37 |
+
preprocessed_image = preprocess_image(image)
|
38 |
+
# Perform detection, classification, and recognition using the ONNX models
|
39 |
+
# This is a placeholder for the actual OCR pipeline
|
40 |
+
# Replace with your model's inference code
|
41 |
+
text = "Detected text goes here"
|
42 |
+
return text
|
43 |
+
|
44 |
+
# Define Gradio interface
|
45 |
+
iface = gr.Interface(
|
46 |
+
fn=ocr_predict,
|
47 |
+
inputs=gr.Image(type="numpy", label="Upload Image"),
|
48 |
+
outputs=gr.Textbox(label="Detected Text"),
|
49 |
+
title="RapidOCR Gradio Demo",
|
50 |
+
description="Upload an image to extract text using RapidOCR."
|
51 |
+
)
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
onnxruntime
|
4 |
+
numpy
|
5 |
+
opencv-python
|
6 |
+
torch
|
7 |
+
huggingface-hub
|