laureBe commited on
Commit
d195db5
Β·
verified Β·
1 Parent(s): 36b4be4

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +104 -15
tasks/text.py CHANGED
@@ -6,12 +6,16 @@ from sklearn.linear_model import LogisticRegression
6
  from sklearn.feature_extraction.text import TfidfVectorizer
7
  from sklearn.model_selection import train_test_split
8
  import pandas as pd
 
 
 
 
9
  from .utils.evaluation import TextEvaluationRequest
10
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
11
 
12
  router = APIRouter()
13
 
14
- DESCRIPTION = "Logistic Regression Baseline"
15
  ROUTE = "/text"
16
 
17
  @router.post(ROUTE, tags=["Text Task"],
@@ -20,8 +24,8 @@ async def evaluate_text(request: TextEvaluationRequest):
20
  """
21
  Evaluate text classification for climate disinformation detection.
22
 
23
- Current Model: Logistic Regression Baseline
24
- - Makes Logistic Regression predictions from the label space (0-7)
25
  - Used as a baseline for comparison
26
  """
27
  # Get space info
@@ -52,28 +56,91 @@ async def evaluate_text(request: TextEvaluationRequest):
52
  test_dataset = train_test["test"]
53
  train_dataset = train_test["train"]
54
  y_train=train_dataset['label']
55
- tfidf_vect = TfidfVectorizer(stop_words = 'english')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
- tfidf_train = tfidf_vect.fit_transform(train_dataset['quote'])
58
- tfidf_test = tfidf_vect.transform(test_dataset['quote'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
 
61
  # Start tracking emissions
62
  tracker.start()
63
  tracker.start_task("inference")
64
-
 
 
 
65
  #--------------------------------------------------------------------------------------------
66
  # YOUR MODEL INFERENCE CODE HERE
67
  # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
68
  #--------------------------------------------------------------------------------------------
69
 
70
- # Make random predictions (placeholder for actual model inference)
71
- true_labels = test_dataset["label"]
72
- LR = LogisticRegression(class_weight='balanced', max_iter=20, random_state=1234,
73
- solver='liblinear')
74
- LR.fit(pd.DataFrame.sparse.from_spmatrix(tfidf_train), pd.DataFrame(y_train))
75
- predictions=LR.predict(pd.DataFrame.sparse.from_spmatrix(tfidf_test))
76
-
77
  #--------------------------------------------------------------------------------------------
78
  # YOUR MODEL INFERENCE STOPS HERE
79
  #--------------------------------------------------------------------------------------------
@@ -81,9 +148,31 @@ async def evaluate_text(request: TextEvaluationRequest):
81
 
82
  # Stop tracking emissions
83
  emissions_data = tracker.stop_task()
 
84
 
 
 
 
 
 
 
 
 
85
  # Calculate accuracy
86
- accuracy = accuracy_score(true_labels, predictions)
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
  # Prepare results dictionary
89
  results = {
 
6
  from sklearn.feature_extraction.text import TfidfVectorizer
7
  from sklearn.model_selection import train_test_split
8
  import pandas as pd
9
+ import tensorflow as tf
10
+ from transformers import DistilBertTokenizer
11
+ from transformers import TFDistilBertForSequenceClassification
12
+ from tensorflow.keras.models import load_model
13
  from .utils.evaluation import TextEvaluationRequest
14
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
15
 
16
  router = APIRouter()
17
 
18
+ DESCRIPTION = "DistilBert classification"
19
  ROUTE = "/text"
20
 
21
  @router.post(ROUTE, tags=["Text Task"],
 
24
  """
25
  Evaluate text classification for climate disinformation detection.
26
 
27
+ Current Model: DistilBert classification
28
+ - DistilBert classification predictions from the label space (0-7)
29
  - Used as a baseline for comparison
30
  """
31
  # Get space info
 
56
  test_dataset = train_test["test"]
57
  train_dataset = train_test["train"]
58
  y_train=train_dataset['label']
59
+
60
+ train_dataset = train_test["train"]
61
+ tn=pd.DataFrame([(i, j, k) for i,j,k in zip(train_dataset["quote"] , train_dataset["source"],
62
+ train_dataset["subsource"])], columns=['quote','source', 'subsource'])
63
+ test_dataset = train_test["test"]
64
+ tt=pd.DataFrame([(i, j, k) for i,j,k in zip(test_dataset["quote"] , test_dataset["source"],
65
+ test_dataset["subsource"])], columns=['quote','source', 'subsource'])
66
+ tt.fillna("",inplace=True)
67
+ tn.fillna("",inplace=True)
68
+ tn['text'] = tn[['quote', 'source','subsource']].agg(' '.join, axis=1)
69
+ tt['text'] = tn[['quote', 'source','subsource']].agg(' '.join, axis=1)
70
+
71
+ def clean_text(x):
72
+ pattern = r'[^a-zA-z0-9\s]'
73
+ text = re.sub(pattern, '', x)
74
+ return x
75
+
76
+ def clean_numbers(x):
77
+ if bool(re.search(r'\d', x)):
78
+ x = re.sub('[0-9]{5,}', '#####', x)
79
+ x = re.sub('[0-9]{4}', '####', x)
80
+ x = re.sub('[0-9]{3}', '###', x)
81
+ x = re.sub('[0-9]{2}', '##', x)
82
+ return x
83
+
84
+ contraction_dict = {"ain't": "is not", "aren't": "are not","can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not", "he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am", "I've": "I have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have","it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have","mightn't": "might not","mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have","o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have","so's": "so as", "this's": "this is","that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all are","y'all've": "you all have","you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have"}
85
+ def _get_contractions(contraction_dict):
86
+ contraction_re = re.compile('(%s)' % '|'.join(contraction_dict.keys()))
87
+ return contraction_dict, contraction_re
88
+ contractions, contractions_re = _get_contractions(contraction_dict)
89
+ def replace_contractions(text):
90
+ def replace(match):
91
+ return contractions[match.group(0)]
92
+ return contractions_re.sub(replace, text)
93
+ train_dataset_df = tn['quote'].apply(lambda x: x.lower())
94
+ test_dataset_df = tt['quote'].apply(lambda x: x.lower())
95
+ # Clean the text
96
+ train_dataset_df = train_dataset_df.apply(lambda x: clean_text(x))
97
+ test_dataset_df= test_dataset_df.apply(lambda x: clean_text(x))
98
+ # Clean numbers
99
+ train_dataset_df= train_dataset_df.apply(lambda x: clean_numbers(x))
100
+ test_dataset_df = test_dataset_df.apply(lambda x: clean_numbers(x))
101
+ # Clean Contractions
102
+ train_dataset_df = train_dataset_df.apply(lambda x: replace_contractions(x))
103
+ test_dataset_df = test_dataset_df.apply(lambda x: replace_contractions(x))
104
 
105
+ y_train_df=pd.DataFrame(train_dataset['label'], columns=['label'])
106
+ y_test_df=pd.DataFrame(test_dataset['label'], columns=['label'])
107
+ y_train_encoded = y_train_df['label'].astype('category').cat.codes
108
+ y_test_encoded = y_test_df['label'].astype('category').cat.codes
109
+ train_labels = y_train_encoded.to_list()
110
+ test_labels=y_test_encoded.to_list()
111
+
112
+ tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
113
+ train_encodings = tokenizer(train_dataset_df.to_list(), truncation=True, padding=True)
114
+ val_encodings = tokenizer(test_dataset_df.to_list(), truncation=True, padding=True)
115
+
116
+
117
+ train_dataset_bert = tf.data.Dataset.from_tensor_slices((
118
+ dict(train_encodings),
119
+ train_labels
120
+ ))
121
+ val_dataset_bert = tf.data.Dataset.from_tensor_slices((
122
+ dict(val_encodings),
123
+ test_labels
124
+ ))
125
 
126
 
127
  # Start tracking emissions
128
  tracker.start()
129
  tracker.start_task("inference")
130
+ model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=8)
131
+
132
+ optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5, epsilon=1e-08)
133
+ model.compile(optimizer=optimizer, loss=model.hf_compute_loss, metrics=['accuracy'])
134
  #--------------------------------------------------------------------------------------------
135
  # YOUR MODEL INFERENCE CODE HERE
136
  # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
137
  #--------------------------------------------------------------------------------------------
138
 
139
+ # Make predictions (placeholder for actual model inference)
140
+
141
+ early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True)
142
+
143
+ model.fit(train_dataset_bert.shuffle(1000).batch(16),epochs=4,batch_size=16,validation_data=val_dataset_bert.shuffle(1000).batch(16),callbacks=[early_stopping])
 
 
144
  #--------------------------------------------------------------------------------------------
145
  # YOUR MODEL INFERENCE STOPS HERE
146
  #--------------------------------------------------------------------------------------------
 
148
 
149
  # Stop tracking emissions
150
  emissions_data = tracker.stop_task()
151
+
152
 
153
+ save_directory = "BERT" # Change this to your preferred location
154
+
155
+ model.save_pretrained(save_directory)
156
+ tokenizer.save_pretrained(save_directory)
157
+ save_directory = "BERT"
158
+ loaded_tokenizer = DistilBertTokenizer.from_pretrained(save_directory)
159
+ loaded_model = TFDistilBertForSequenceClassification.from_pretrained(save_directory)
160
+
161
  # Calculate accuracy
162
+ def predict_category(text):
163
+ predict_input = loaded_tokenizer.encode(text,
164
+ truncation=True,
165
+ padding=True,
166
+ return_tensors="tf")
167
+ output = loaded_model(predict_input)[0]
168
+ prediction_value = tf.argmax(output, axis=1).numpy()[0]
169
+ return prediction_value
170
+ #β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š-β€Š- -
171
+ y_pred = []
172
+ for text_ in test_dataset_df.to_list():
173
+ y_pred.append(predict_category(text_))
174
+
175
+ accuracy_score(test_labels, y_pred)
176
 
177
  # Prepare results dictionary
178
  results = {