laureBe commited on
Commit
dca6bb5
·
verified ·
1 Parent(s): 96dd54b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -9
README.md CHANGED
@@ -8,7 +8,7 @@ pinned: false
8
  ---
9
 
10
 
11
- # Climate Disinformation Classification using XGBOOST
12
 
13
  ## Model Description
14
 
@@ -16,7 +16,7 @@ This is a model based on XGBOOST classifier for TF-IDF vectorized texts for the
16
 
17
  ### Intended Use
18
 
19
- - **Primary intended uses**: Baseline comparison for climate disinformation classification models
20
  - **Primary intended users**: Researchers and developers participating in the Frugal AI Challenge
21
  - **Out-of-scope use cases**: Not intended for production use or real-world classification tasks
22
 
@@ -40,10 +40,10 @@ The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
40
  ## Performance
41
 
42
  ### Metrics
43
- - **Accuracy**:
44
  - **Environmental Impact**:
45
- - Emissions tracked in gCO2eq
46
- - Energy consumption tracked in Wh
47
 
48
  ### Model Architecture
49
  The model implements a random choice between the 8 possible labels, serving as the simplest possible baseline.
@@ -58,10 +58,9 @@ This tracking helps establish a baseline for the environmental impact of model d
58
 
59
  ## Limitations
60
  - Text Classification using XGBOOST
61
- - No learning or pattern recognition
62
- - Input text vectorized/tokenized with TF-IDF
63
- - XGBOOST parameter search
64
- - Serves only as baseline reference
65
  - Not suitable for any real-world applications
66
 
67
  ## Ethical Considerations
 
8
  ---
9
 
10
 
11
+ # Climate Disinformation Classification using XGBOOST over TI-IDF vectorized input optimized using RandomizedSearchCV
12
 
13
  ## Model Description
14
 
 
16
 
17
  ### Intended Use
18
 
19
+ - **Primary intended uses**: Comparison for climate disinformation classification models
20
  - **Primary intended users**: Researchers and developers participating in the Frugal AI Challenge
21
  - **Out-of-scope use cases**: Not intended for production use or real-world classification tasks
22
 
 
40
  ## Performance
41
 
42
  ### Metrics
43
+ - **Accuracy**: 0.9815384615384616
44
  - **Environmental Impact**:
45
+ - Emissions tracked in gCO2eq: 0.19426531051455168
46
+ - Energy consumption tracked in Wh: 0.5262726046395284
47
 
48
  ### Model Architecture
49
  The model implements a random choice between the 8 possible labels, serving as the simplest possible baseline.
 
58
 
59
  ## Limitations
60
  - Text Classification using XGBOOST
61
+ - Input text vectorized with TF-IDF
62
+ - XGBOOST parameter search with RandomizedSearchCV
63
+ - Serves as baseline reference
 
64
  - Not suitable for any real-world applications
65
 
66
  ## Ethical Considerations