laureBe commited on
Commit
ee79959
·
verified ·
1 Parent(s): a94024e

Update tasks/text.py

Browse files
Files changed (1) hide show
  1. tasks/text.py +2 -3
tasks/text.py CHANGED
@@ -129,8 +129,7 @@ async def evaluate_text(request: TextEvaluationRequest):
129
  # score shape == (batch_size, max_length, 1)
130
  # we get 1 at the last axis because we are applying score to self.V
131
  # the shape of the tensor before applying self.V is (batch_size, max_length, units)
132
- score = tf.nn.tanh(
133
- self.W1(features) + self.W2(hidden_with_time_axis))
134
 
135
  # attention_weights shape == (batch_size, max_length, 1)
136
  attention_weights = tf.nn.softmax(self.V(score), axis=1)
@@ -151,7 +150,7 @@ async def evaluate_text(request: TextEvaluationRequest):
151
 
152
  (lstm, forward_h, forward_c, backward_h, backward_c) = Bidirectional(LSTM(RNN_CELL_SIZE, return_sequences=True, return_state=True), name="bi_lstm_1")(lstm)
153
 
154
- state_h = Concatenate()([forward_h, backward_h])
155
  state_c = Concatenate()([forward_c, backward_c])
156
 
157
  context_vector, attention_weights = Attention(10)(lstm, state_h)
 
129
  # score shape == (batch_size, max_length, 1)
130
  # we get 1 at the last axis because we are applying score to self.V
131
  # the shape of the tensor before applying self.V is (batch_size, max_length, units)
132
+ score = tf.nn.tanh(self.W1(features) + self.W2(hidden_with_time_axis))
 
133
 
134
  # attention_weights shape == (batch_size, max_length, 1)
135
  attention_weights = tf.nn.softmax(self.V(score), axis=1)
 
150
 
151
  (lstm, forward_h, forward_c, backward_h, backward_c) = Bidirectional(LSTM(RNN_CELL_SIZE, return_sequences=True, return_state=True), name="bi_lstm_1")(lstm)
152
 
153
+ state_h = Concatenate()([forward_h, backward_h])
154
  state_c = Concatenate()([forward_c, backward_c])
155
 
156
  context_vector, attention_weights = Attention(10)(lstm, state_h)