from fastapi import APIRouter from datetime import datetime from datasets import load_dataset from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split import pandas as pd import tensorflow as tf from transformers import DistilBertTokenizer from transformers import TFDistilBertForSequenceClassification from transformers import logging logging.set_verbosity_error() logging.set_verbosity_warning() from .utils.evaluation import TextEvaluationRequest from .utils.emissions import tracker, clean_emissions_data, get_space_info import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' router = APIRouter() DESCRIPTION = "DistilBert classification" ROUTE = "/text" @router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION) async def evaluate_text(request: TextEvaluationRequest): """ Evaluate text classification for climate disinformation detection. Current Model: DistilBert classification - DistilBert classification predictions from the label space (0-7) - Used as a baseline for comparison """ # Get space info username, space_url = get_space_info() # Define the label mapping LABEL_MAPPING = { "0_not_relevant": 0, "1_not_happening": 1, "2_not_human": 2, "3_not_bad": 3, "4_solutions_harmful_unnecessary": 4, "5_science_unreliable": 5, "6_proponents_biased": 6, "7_fossil_fuels_needed": 7 } # Load and prepare the dataset dataset = load_dataset(request.dataset_name) # Convert string labels to integers dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]}) # Split dataset train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed) test_dataset = train_test["test"] train_dataset = train_test["train"] y_train=train_dataset['label'] train_dataset = train_test["train"] tn=pd.DataFrame([(i, j, k) for i,j,k in zip(train_dataset["quote"] , train_dataset["source"], train_dataset["subsource"])], columns=['quote','source', 'subsource']) test_dataset = train_test["test"] tt=pd.DataFrame([(i, j, k) for i,j,k in zip(test_dataset["quote"] , test_dataset["source"], test_dataset["subsource"])], columns=['quote','source', 'subsource']) tt.fillna("",inplace=True) tn.fillna("",inplace=True) tn['text'] = tn[['quote', 'source','subsource']].agg(' '.join, axis=1) tt['text'] = tn[['quote', 'source','subsource']].agg(' '.join, axis=1) def clean_text(x): pattern = r'[^a-zA-z0-9\s]' text = re.sub(pattern, '', x) return x def clean_numbers(x): if bool(re.search(r'\d', x)): x = re.sub('[0-9]{5,}', '#####', x) x = re.sub('[0-9]{4}', '####', x) x = re.sub('[0-9]{3}', '###', x) x = re.sub('[0-9]{2}', '##', x) return x contraction_dict = {"ain't": "is not", "aren't": "are not","can't": "cannot", "'cause": "because", "could've": "could have", "couldn't": "could not", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hasn't": "has not", "haven't": "have not", "he'd": "he would","he'll": "he will", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "I'd": "I would", "I'd've": "I would have", "I'll": "I will", "I'll've": "I will have","I'm": "I am", "I've": "I have", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have","i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have","it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have","mightn't": "might not","mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have","o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have","so's": "so as", "this's": "this is","that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "here's": "here is","they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would","y'all'd've": "you all would have","y'all're": "you all are","y'all've": "you all have","you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have"} def _get_contractions(contraction_dict): contraction_re = re.compile('(%s)' % '|'.join(contraction_dict.keys())) return contraction_dict, contraction_re contractions, contractions_re = _get_contractions(contraction_dict) def replace_contractions(text): def replace(match): return contractions[match.group(0)] return contractions_re.sub(replace, text) train_dataset_df = tn['quote'].apply(lambda x: x.lower()) test_dataset_df = tt['quote'].apply(lambda x: x.lower()) # Clean the text train_dataset_df = train_dataset_df.apply(lambda x: clean_text(x)) test_dataset_df= test_dataset_df.apply(lambda x: clean_text(x)) # Clean numbers train_dataset_df= train_dataset_df.apply(lambda x: clean_numbers(x)) test_dataset_df = test_dataset_df.apply(lambda x: clean_numbers(x)) # Clean Contractions train_dataset_df = train_dataset_df.apply(lambda x: replace_contractions(x)) test_dataset_df = test_dataset_df.apply(lambda x: replace_contractions(x)) # Encoding y_train_df=pd.DataFrame(train_dataset['label'], columns=['label']) y_test_df=pd.DataFrame(test_dataset['label'], columns=['label']) y_train_encoded = y_train_df['label'].astype('category').cat.codes y_test_encoded = y_test_df['label'].astype('category').cat.codes train_labels = y_train_encoded.to_list() test_labels=y_test_encoded.to_list() # Tokenize tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') train_encodings = tokenizer(train_dataset_df.to_list(), truncation=True, padding=True) val_encodings = tokenizer(test_dataset_df.to_list(), truncation=True, padding=True) # Slicing train_dataset_bert = tf.data.Dataset.from_tensor_slices(( dict(train_encodings), train_labels )) val_dataset_bert = tf.data.Dataset.from_tensor_slices(( dict(val_encodings), test_labels )) model = TFDistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased', num_labels=8) # Start tracking emissions tracker.start() tracker.start_task("inference") optimizer = tf.keras.optimizers.Adam(learning_rate=5e-5, epsilon=1e-08) model.compile(optimizer=optimizer, loss=model.hf_compute_loss, metrics=['accuracy']) #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE CODE HERE # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked. #-------------------------------------------------------------------------------------------- # Make predictions (placeholder for actual model inference) early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=3, restore_best_weights=True) model.fit(train_dataset_bert.shuffle(1000).batch(16),epochs=2,batch_size=16,validation_data=val_dataset_bert.shuffle(1000).batch(16),callbacks=[early_stopping]) #-------------------------------------------------------------------------------------------- # YOUR MODEL INFERENCE STOPS HERE #-------------------------------------------------------------------------------------------- # Stop tracking emissions emissions_data = tracker.stop_task() # Calculate accuracy def predict_category(text): predict_input =tokenizer.encode(text, truncation=True, padding=True, return_tensors="tf") output = model(predict_input)[0] prediction_value = tf.argmax(output, axis=1).numpy()[0] return prediction_value # - - - - - - - - - - - - - - - - - - - - - - - - - - - y_pred = [] for text_ in test_dataset_df.to_list(): y_pred.append(predict_category(text_)) accuracy_score(test_labels, y_pred) # Prepare results dictionary results = { "username": username, "space_url": space_url, "submission_timestamp": datetime.now().isoformat(), "model_description": DESCRIPTION, "accuracy": float(accuracy), "energy_consumed_wh": emissions_data.energy_consumed * 1000, "emissions_gco2eq": emissions_data.emissions * 1000, "emissions_data": clean_emissions_data(emissions_data), "api_route": ROUTE, "dataset_config": { "dataset_name": request.dataset_name, "test_size": request.test_size, "test_seed": request.test_seed } } return results