Spaces:
Sleeping
Sleeping
Upload notebooks_submitted-text.ipynb
Browse files
notebooks/notebooks_submitted-text.ipynb
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Text task notebook template\n",
|
8 |
+
"## Loading the necessary libraries"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [
|
16 |
+
{
|
17 |
+
"name": "stderr",
|
18 |
+
"output_type": "stream",
|
19 |
+
"text": [
|
20 |
+
"2025-01-29 12:18:59.954133: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
|
21 |
+
"To enable the following instructions: SSE4.1 SSE4.2 AVX AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"name": "stdout",
|
26 |
+
"output_type": "stream",
|
27 |
+
"text": [
|
28 |
+
"{'quote': 'Interesting to note that Oklahoma minimum temperatures in 2011 were in the bottom ten, including the coldest Oklahoma temperature ever recorded, -31F on February 10, 2011.', 'label': '0_not_relevant', 'source': 'FLICC', 'url': 'https://huggingface.co/datasets/fzanartu/FLICCdataset', 'language': 'en', 'subsource': 'CARDS', 'id': None, '__index_level_0__': 1109}\n"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"data": {
|
33 |
+
"text/plain": [
|
34 |
+
"DatasetDict({\n",
|
35 |
+
" train: Dataset({\n",
|
36 |
+
" features: ['quote', 'label', 'source', 'url', 'language', 'subsource', 'id', '__index_level_0__'],\n",
|
37 |
+
" num_rows: 4872\n",
|
38 |
+
" })\n",
|
39 |
+
" test: Dataset({\n",
|
40 |
+
" features: ['quote', 'label', 'source', 'url', 'language', 'subsource', 'id', '__index_level_0__'],\n",
|
41 |
+
" num_rows: 1219\n",
|
42 |
+
" })\n",
|
43 |
+
"})"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"execution_count": 1,
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "execute_result"
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": [
|
52 |
+
"from codecarbon import EmissionsTracker\n",
|
53 |
+
"import huggingface_hub\n",
|
54 |
+
"from fastapi import APIRouter\n",
|
55 |
+
"from datetime import datetime\n",
|
56 |
+
"from datasets import load_dataset\n",
|
57 |
+
"from sklearn.metrics import accuracy_score\n",
|
58 |
+
"import pandas as pd\n",
|
59 |
+
"from tqdm import tqdm\n",
|
60 |
+
"from sklearn.model_selection import train_test_split\n",
|
61 |
+
"import tensorflow as tf\n",
|
62 |
+
"from sklearn import preprocessing, decomposition, model_selection, metrics, pipeline\n",
|
63 |
+
"from keras.layers import GlobalMaxPooling1D, Conv1D, MaxPooling1D, Flatten, Bidirectional, SpatialDropout1D\n",
|
64 |
+
"\n",
|
65 |
+
"\n",
|
66 |
+
"import sys\n",
|
67 |
+
"sys.path.append('../tasks')\n",
|
68 |
+
"\n",
|
69 |
+
"#from utils.evaluation import TextEvaluationRequest\n",
|
70 |
+
"#from utils.emissions import tracker, clean_emissions_data, get_space_info\n",
|
71 |
+
"\n",
|
72 |
+
"dataset = load_dataset(\"quotaclimat/frugalaichallenge-text-train\")\n",
|
73 |
+
"print(next(iter(dataset['train'])))\n",
|
74 |
+
" # Convert string labels to integers\n",
|
75 |
+
"LABEL_MAPPING = {\n",
|
76 |
+
" \"0_not_relevant\": 0,\n",
|
77 |
+
" \"1_not_happening\": 1,\n",
|
78 |
+
" \"2_not_human\": 2,\n",
|
79 |
+
" \"3_not_bad\": 3,\n",
|
80 |
+
" \"4_solutions_harmful_unnecessary\": 4,\n",
|
81 |
+
" \"5_science_unreliable\": 5,\n",
|
82 |
+
" \"6_proponents_biased\": 6,\n",
|
83 |
+
" \"7_fossil_fuels_needed\": 7\n",
|
84 |
+
" }\n",
|
85 |
+
"dataset = dataset.map(lambda x: {\"label\": LABEL_MAPPING[x[\"label\"]]})\n",
|
86 |
+
"dataset\n"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "markdown",
|
91 |
+
"metadata": {},
|
92 |
+
"source": [
|
93 |
+
"## Loading the datasets and splitting them"
|
94 |
+
]
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"execution_count": 2,
|
99 |
+
"metadata": {},
|
100 |
+
"outputs": [],
|
101 |
+
"source": [
|
102 |
+
"#request = TextEvaluationRequest()\n",
|
103 |
+
"\n",
|
104 |
+
"# Load and prepare the dataset\n",
|
105 |
+
"#dataset = load_dataset(request.dataset_name)\n",
|
106 |
+
"\n",
|
107 |
+
"# Convert string labels to integers\n",
|
108 |
+
"#dataset = dataset.map(lambda x: {\"label\": LABEL_MAPPING[x[\"label\"]]})\n",
|
109 |
+
"\n",
|
110 |
+
"# Split dataset\n",
|
111 |
+
"train_test = dataset[\"train\"].train_test_split(test_size=.2, #request.test_size, \n",
|
112 |
+
" seed=42 )#request.test_seed)\n"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 3,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"train_dataset = train_test[\"train\"]\n",
|
122 |
+
"test_dataset = train_test[\"test\"]\n"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": 4,
|
128 |
+
"metadata": {},
|
129 |
+
"outputs": [
|
130 |
+
{
|
131 |
+
"name": "stderr",
|
132 |
+
"output_type": "stream",
|
133 |
+
"text": [
|
134 |
+
"[nltk_data] Downloading package stopwords to\n",
|
135 |
+
"[nltk_data] /Users/laureberti/nltk_data...\n",
|
136 |
+
"[nltk_data] Package stopwords is already up-to-date!\n",
|
137 |
+
"[nltk_data] Downloading package wordnet to\n",
|
138 |
+
"[nltk_data] /Users/laureberti/nltk_data...\n",
|
139 |
+
"[nltk_data] Package wordnet is already up-to-date!\n"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"data": {
|
144 |
+
"text/html": [
|
145 |
+
"<div>\n",
|
146 |
+
"<style scoped>\n",
|
147 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
148 |
+
" vertical-align: middle;\n",
|
149 |
+
" }\n",
|
150 |
+
"\n",
|
151 |
+
" .dataframe tbody tr th {\n",
|
152 |
+
" vertical-align: top;\n",
|
153 |
+
" }\n",
|
154 |
+
"\n",
|
155 |
+
" .dataframe thead th {\n",
|
156 |
+
" text-align: right;\n",
|
157 |
+
" }\n",
|
158 |
+
"</style>\n",
|
159 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
160 |
+
" <thead>\n",
|
161 |
+
" <tr style=\"text-align: right;\">\n",
|
162 |
+
" <th></th>\n",
|
163 |
+
" <th>quote</th>\n",
|
164 |
+
" <th>clean_text</th>\n",
|
165 |
+
" <th>length_clean_text</th>\n",
|
166 |
+
" </tr>\n",
|
167 |
+
" </thead>\n",
|
168 |
+
" <tbody>\n",
|
169 |
+
" <tr>\n",
|
170 |
+
" <th>0</th>\n",
|
171 |
+
" <td>Americans for Tax Reform opposes a carbon tax ...</td>\n",
|
172 |
+
" <td>american tax reform oppose carbon tax work tir...</td>\n",
|
173 |
+
" <td>79</td>\n",
|
174 |
+
" </tr>\n",
|
175 |
+
" <tr>\n",
|
176 |
+
" <th>1</th>\n",
|
177 |
+
" <td>More than 100 climate models over the past 30 ...</td>\n",
|
178 |
+
" <td>100 climate model past 30 year predict actuall...</td>\n",
|
179 |
+
" <td>152</td>\n",
|
180 |
+
" </tr>\n",
|
181 |
+
" <tr>\n",
|
182 |
+
" <th>2</th>\n",
|
183 |
+
" <td>As an oil and gas operator who has been in the...</td>\n",
|
184 |
+
" <td>oil gas operator ha industry 30 year im fortun...</td>\n",
|
185 |
+
" <td>362</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>3</th>\n",
|
189 |
+
" <td>Climate has always changed, there've been many...</td>\n",
|
190 |
+
" <td>climate ha always change thereve many extincti...</td>\n",
|
191 |
+
" <td>141</td>\n",
|
192 |
+
" </tr>\n",
|
193 |
+
" <tr>\n",
|
194 |
+
" <th>4</th>\n",
|
195 |
+
" <td>People have made a mistake. Theyβve started to...</td>\n",
|
196 |
+
" <td>people make mistake theyve start believe human...</td>\n",
|
197 |
+
" <td>118</td>\n",
|
198 |
+
" </tr>\n",
|
199 |
+
" </tbody>\n",
|
200 |
+
"</table>\n",
|
201 |
+
"</div>"
|
202 |
+
],
|
203 |
+
"text/plain": [
|
204 |
+
" quote \\\n",
|
205 |
+
"0 Americans for Tax Reform opposes a carbon tax ... \n",
|
206 |
+
"1 More than 100 climate models over the past 30 ... \n",
|
207 |
+
"2 As an oil and gas operator who has been in the... \n",
|
208 |
+
"3 Climate has always changed, there've been many... \n",
|
209 |
+
"4 People have made a mistake. Theyβve started to... \n",
|
210 |
+
"\n",
|
211 |
+
" clean_text length_clean_text \n",
|
212 |
+
"0 american tax reform oppose carbon tax work tir... 79 \n",
|
213 |
+
"1 100 climate model past 30 year predict actuall... 152 \n",
|
214 |
+
"2 oil gas operator ha industry 30 year im fortun... 362 \n",
|
215 |
+
"3 climate ha always change thereve many extincti... 141 \n",
|
216 |
+
"4 people make mistake theyve start believe human... 118 "
|
217 |
+
]
|
218 |
+
},
|
219 |
+
"execution_count": 4,
|
220 |
+
"metadata": {},
|
221 |
+
"output_type": "execute_result"
|
222 |
+
}
|
223 |
+
],
|
224 |
+
"source": [
|
225 |
+
"import nltk\n",
|
226 |
+
"nltk.download('stopwords')\n",
|
227 |
+
"nltk.download('wordnet')\n",
|
228 |
+
"\n",
|
229 |
+
"import re\n",
|
230 |
+
"from nltk.stem import WordNetLemmatizer\n",
|
231 |
+
"from nltk.corpus import stopwords\n",
|
232 |
+
"\n",
|
233 |
+
"stop_words = set(stopwords.words(\"english\")) \n",
|
234 |
+
"lemmatizer = WordNetLemmatizer()\n",
|
235 |
+
"\n",
|
236 |
+
"\n",
|
237 |
+
"def clean_text(text):\n",
|
238 |
+
" text = re.sub(r'[^\\w\\s]','',text, re.UNICODE)\n",
|
239 |
+
" text = text.lower()\n",
|
240 |
+
" text = [lemmatizer.lemmatize(token) for token in text.split(\" \")]\n",
|
241 |
+
" text = [lemmatizer.lemmatize(token, \"v\") for token in text]\n",
|
242 |
+
" text = [word for word in text if not word in stop_words]\n",
|
243 |
+
" text = \" \".join(text)\n",
|
244 |
+
" return text\n",
|
245 |
+
"\n",
|
246 |
+
"train_df= pd.DataFrame(train_dataset[\"quote\"], columns=['quote']) \n",
|
247 |
+
"train_df['clean_text'] = train_df.map(clean_text) \n",
|
248 |
+
"train_df['length_clean_text'] = train_df['clean_text'].map(len)\n",
|
249 |
+
"\n",
|
250 |
+
"train_df.head()\n"
|
251 |
+
]
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"cell_type": "code",
|
255 |
+
"execution_count": 5,
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [
|
258 |
+
{
|
259 |
+
"data": {
|
260 |
+
"text/html": [
|
261 |
+
"<div>\n",
|
262 |
+
"<style scoped>\n",
|
263 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
264 |
+
" vertical-align: middle;\n",
|
265 |
+
" }\n",
|
266 |
+
"\n",
|
267 |
+
" .dataframe tbody tr th {\n",
|
268 |
+
" vertical-align: top;\n",
|
269 |
+
" }\n",
|
270 |
+
"\n",
|
271 |
+
" .dataframe thead th {\n",
|
272 |
+
" text-align: right;\n",
|
273 |
+
" }\n",
|
274 |
+
"</style>\n",
|
275 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
276 |
+
" <thead>\n",
|
277 |
+
" <tr style=\"text-align: right;\">\n",
|
278 |
+
" <th></th>\n",
|
279 |
+
" <th>quote</th>\n",
|
280 |
+
" <th>clean_text</th>\n",
|
281 |
+
" <th>length_clean_text</th>\n",
|
282 |
+
" </tr>\n",
|
283 |
+
" </thead>\n",
|
284 |
+
" <tbody>\n",
|
285 |
+
" <tr>\n",
|
286 |
+
" <th>0</th>\n",
|
287 |
+
" <td>The term climate change was hijacked by βprogr...</td>\n",
|
288 |
+
" <td>term climate change wa hijack progressive term...</td>\n",
|
289 |
+
" <td>76</td>\n",
|
290 |
+
" </tr>\n",
|
291 |
+
" <tr>\n",
|
292 |
+
" <th>1</th>\n",
|
293 |
+
" <td>Climate change is a scam.Banks and Home Owner'...</td>\n",
|
294 |
+
" <td>climate change scambanks home owner insurance ...</td>\n",
|
295 |
+
" <td>82</td>\n",
|
296 |
+
" </tr>\n",
|
297 |
+
" <tr>\n",
|
298 |
+
" <th>2</th>\n",
|
299 |
+
" <td>Against the half-trillion in benefits you can ...</td>\n",
|
300 |
+
" <td>halftrillion benefit weigh global warm impact ...</td>\n",
|
301 |
+
" <td>337</td>\n",
|
302 |
+
" </tr>\n",
|
303 |
+
" <tr>\n",
|
304 |
+
" <th>3</th>\n",
|
305 |
+
" <td>Do you agree with the vast majority of climate...</td>\n",
|
306 |
+
" <td>agree vast majority climate scientist climate ...</td>\n",
|
307 |
+
" <td>59</td>\n",
|
308 |
+
" </tr>\n",
|
309 |
+
" <tr>\n",
|
310 |
+
" <th>4</th>\n",
|
311 |
+
" <td>Global warming and climate change, even if it ...</td>\n",
|
312 |
+
" <td>global warm climate change even 100 cause huma...</td>\n",
|
313 |
+
" <td>165</td>\n",
|
314 |
+
" </tr>\n",
|
315 |
+
" </tbody>\n",
|
316 |
+
"</table>\n",
|
317 |
+
"</div>"
|
318 |
+
],
|
319 |
+
"text/plain": [
|
320 |
+
" quote \\\n",
|
321 |
+
"0 The term climate change was hijacked by βprogr... \n",
|
322 |
+
"1 Climate change is a scam.Banks and Home Owner'... \n",
|
323 |
+
"2 Against the half-trillion in benefits you can ... \n",
|
324 |
+
"3 Do you agree with the vast majority of climate... \n",
|
325 |
+
"4 Global warming and climate change, even if it ... \n",
|
326 |
+
"\n",
|
327 |
+
" clean_text length_clean_text \n",
|
328 |
+
"0 term climate change wa hijack progressive term... 76 \n",
|
329 |
+
"1 climate change scambanks home owner insurance ... 82 \n",
|
330 |
+
"2 halftrillion benefit weigh global warm impact ... 337 \n",
|
331 |
+
"3 agree vast majority climate scientist climate ... 59 \n",
|
332 |
+
"4 global warm climate change even 100 cause huma... 165 "
|
333 |
+
]
|
334 |
+
},
|
335 |
+
"execution_count": 5,
|
336 |
+
"metadata": {},
|
337 |
+
"output_type": "execute_result"
|
338 |
+
}
|
339 |
+
],
|
340 |
+
"source": [
|
341 |
+
"test_df= pd.DataFrame(test_dataset[\"quote\"], columns=['quote']) \n",
|
342 |
+
"test_df['clean_text'] = test_df.map(clean_text) \n",
|
343 |
+
"test_df['length_clean_text'] = test_df['clean_text'].map(len)\n",
|
344 |
+
"\n",
|
345 |
+
"test_df.head()"
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"execution_count": 6,
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [
|
353 |
+
{
|
354 |
+
"data": {
|
355 |
+
"text/plain": [
|
356 |
+
"27.92250449063382"
|
357 |
+
]
|
358 |
+
},
|
359 |
+
"execution_count": 6,
|
360 |
+
"metadata": {},
|
361 |
+
"output_type": "execute_result"
|
362 |
+
}
|
363 |
+
],
|
364 |
+
"source": [
|
365 |
+
"train_df['clean_text'].apply(lambda x: len(x.split(\" \"))).mean()"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "code",
|
370 |
+
"execution_count": 7,
|
371 |
+
"metadata": {},
|
372 |
+
"outputs": [
|
373 |
+
{
|
374 |
+
"data": {
|
375 |
+
"text/plain": [
|
376 |
+
"27.25948717948718"
|
377 |
+
]
|
378 |
+
},
|
379 |
+
"execution_count": 7,
|
380 |
+
"metadata": {},
|
381 |
+
"output_type": "execute_result"
|
382 |
+
}
|
383 |
+
],
|
384 |
+
"source": [
|
385 |
+
"test_df['clean_text'].apply(lambda x: len(x.split(\" \"))).mean()"
|
386 |
+
]
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"cell_type": "code",
|
390 |
+
"execution_count": 32,
|
391 |
+
"metadata": {},
|
392 |
+
"outputs": [],
|
393 |
+
"source": [
|
394 |
+
"import tensorflow as tf\n",
|
395 |
+
"import tensorflow.keras as keras\n",
|
396 |
+
"from tensorflow.keras.preprocessing.text import Tokenizer\n",
|
397 |
+
"from tensorflow.keras.preprocessing.sequence import pad_sequences\n",
|
398 |
+
"from tensorflow.keras.layers import Concatenate, Dense, Input, LSTM, Embedding, Dropout, Activation, GRU, Flatten\n",
|
399 |
+
"from tensorflow.keras.layers import Bidirectional, GlobalMaxPool1D\n",
|
400 |
+
"from tensorflow.keras.models import Model, Sequential\n",
|
401 |
+
"from tensorflow.keras.layers import Convolution1D\n",
|
402 |
+
"from tensorflow.keras import initializers, regularizers, constraints, optimizers, layers\n",
|
403 |
+
"\n",
|
404 |
+
"\n",
|
405 |
+
"MAX_FEATURES = 6000\n",
|
406 |
+
"EMBED_SIZE = 28\n",
|
407 |
+
"tokenizer = Tokenizer(num_words=MAX_FEATURES)\n",
|
408 |
+
"tokenizer.fit_on_texts(train_df['clean_text'])\n",
|
409 |
+
"list_tokenized_train = tokenizer.texts_to_sequences(train_df['clean_text'])\n",
|
410 |
+
"\n",
|
411 |
+
"RNN_CELL_SIZE = 32\n",
|
412 |
+
"\n",
|
413 |
+
"MAX_LEN = 30 \n",
|
414 |
+
"\n",
|
415 |
+
"X_train = pad_sequences(list_tokenized_train, maxlen=MAX_LEN)\n"
|
416 |
+
]
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"cell_type": "code",
|
420 |
+
"execution_count": 33,
|
421 |
+
"metadata": {},
|
422 |
+
"outputs": [],
|
423 |
+
"source": [
|
424 |
+
"true_labels = test_dataset[\"label\"]\n",
|
425 |
+
"y_train = train_dataset[\"label\"]\n",
|
426 |
+
"y_test = test_dataset[\"label\"]"
|
427 |
+
]
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"cell_type": "code",
|
431 |
+
"execution_count": 34,
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"class Attention(tf.keras.Model):\n",
|
436 |
+
" def __init__(self, units):\n",
|
437 |
+
" super(Attention, self).__init__()\n",
|
438 |
+
" self.W1 = tf.keras.layers.Dense(units)\n",
|
439 |
+
" self.W2 = tf.keras.layers.Dense(units)\n",
|
440 |
+
" self.V = tf.keras.layers.Dense(1)\n",
|
441 |
+
" \n",
|
442 |
+
" def call(self, features, hidden):\n",
|
443 |
+
" # hidden shape == (batch_size, hidden size)\n",
|
444 |
+
" # hidden_with_time_axis shape == (batch_size, 1, hidden size)\n",
|
445 |
+
" # we are doing this to perform addition to calculate the score\n",
|
446 |
+
" hidden_with_time_axis = tf.expand_dims(hidden, 1)\n",
|
447 |
+
"\n",
|
448 |
+
" # score shape == (batch_size, max_length, 1)\n",
|
449 |
+
" # we get 1 at the last axis because we are applying score to self.V\n",
|
450 |
+
" # the shape of the tensor before applying self.V is (batch_size, max_length, units)\n",
|
451 |
+
" score = tf.nn.tanh(\n",
|
452 |
+
" self.W1(features) + self.W2(hidden_with_time_axis))\n",
|
453 |
+
" \n",
|
454 |
+
" # attention_weights shape == (batch_size, max_length, 1)\n",
|
455 |
+
" attention_weights = tf.nn.softmax(self.V(score), axis=1)\n",
|
456 |
+
"\n",
|
457 |
+
" # context_vector shape after sum == (batch_size, hidden_size)\n",
|
458 |
+
" context_vector = attention_weights * features\n",
|
459 |
+
" context_vector = tf.reduce_sum(context_vector, axis=1)\n",
|
460 |
+
" \n",
|
461 |
+
" return context_vector, attention_weights"
|
462 |
+
]
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"cell_type": "code",
|
466 |
+
"execution_count": 35,
|
467 |
+
"metadata": {},
|
468 |
+
"outputs": [],
|
469 |
+
"source": [
|
470 |
+
"sequence_input = Input(shape=(MAX_LEN,), dtype=\"int32\")\n",
|
471 |
+
"embedded_sequences = Embedding(MAX_FEATURES, EMBED_SIZE)(sequence_input)"
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "code",
|
476 |
+
"execution_count": 36,
|
477 |
+
"metadata": {},
|
478 |
+
"outputs": [],
|
479 |
+
"source": [
|
480 |
+
"lstm = Bidirectional(LSTM(RNN_CELL_SIZE, return_sequences = True), name=\"bi_lstm_0\")(embedded_sequences)\n",
|
481 |
+
"\n",
|
482 |
+
"# Getting our LSTM outputs\n",
|
483 |
+
"(lstm, forward_h, forward_c, backward_h, backward_c) = Bidirectional(LSTM(RNN_CELL_SIZE, return_sequences=True, return_state=True), name=\"bi_lstm_1\")(lstm)"
|
484 |
+
]
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"cell_type": "code",
|
488 |
+
"execution_count": 37,
|
489 |
+
"metadata": {},
|
490 |
+
"outputs": [],
|
491 |
+
"source": [
|
492 |
+
"state_h = Concatenate()([forward_h, backward_h])\n",
|
493 |
+
"state_c = Concatenate()([forward_c, backward_c])\n",
|
494 |
+
"\n",
|
495 |
+
"context_vector, attention_weights = Attention(10)(lstm, state_h)\n",
|
496 |
+
"\n",
|
497 |
+
"# Removal of the globalMaxPool1D could be trouble\n",
|
498 |
+
"#globmax = GlobalMaxPool1D()(context_vector)\n",
|
499 |
+
"dense1 = Dense(20, activation=\"relu\")(context_vector)\n",
|
500 |
+
"dropout = Dropout(0.05)(dense1)\n",
|
501 |
+
"output = Dense(8, activation=\"sigmoid\")(dropout)\n",
|
502 |
+
"\n",
|
503 |
+
"model = keras.Model(inputs=sequence_input, outputs=output)"
|
504 |
+
]
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"cell_type": "code",
|
508 |
+
"execution_count": 38,
|
509 |
+
"metadata": {},
|
510 |
+
"outputs": [
|
511 |
+
{
|
512 |
+
"data": {
|
513 |
+
"text/html": [
|
514 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"functional_1\"</span>\n",
|
515 |
+
"</pre>\n"
|
516 |
+
],
|
517 |
+
"text/plain": [
|
518 |
+
"\u001b[1mModel: \"functional_1\"\u001b[0m\n"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
"metadata": {},
|
522 |
+
"output_type": "display_data"
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"data": {
|
526 |
+
"text/html": [
|
527 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">βββββββββββββββββββββββ³ββββββββββββββββββββ³βββββββββββββ³ββββββββββββββββββββ\n",
|
528 |
+
"β<span style=\"font-weight: bold\"> Layer (type) </span>β<span style=\"font-weight: bold\"> Output Shape </span>β<span style=\"font-weight: bold\"> Param # </span>β<span style=\"font-weight: bold\"> Connected to </span>β\n",
|
529 |
+
"β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
|
530 |
+
"β input_layer_1 β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β - β\n",
|
531 |
+
"β (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">InputLayer</span>) β β β β\n",
|
532 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
533 |
+
"β embedding_1 β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">28</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">168,000</span> β input_layer_1[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>]β¦ β\n",
|
534 |
+
"β (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Embedding</span>) β β β β\n",
|
535 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
536 |
+
"β bi_lstm_0 β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">15,616</span> β embedding_1[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>] β\n",
|
537 |
+
"β (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Bidirectional</span>) β β β β\n",
|
538 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
539 |
+
"β bi_lstm_1 β [(<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>), β <span style=\"color: #00af00; text-decoration-color: #00af00\">24,832</span> β bi_lstm_0[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>] β\n",
|
540 |
+
"β (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Bidirectional</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">32</span>), β β β\n",
|
541 |
+
"β β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">32</span>), β β β\n",
|
542 |
+
"β β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">32</span>), β β β\n",
|
543 |
+
"β β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">32</span>)] β β β\n",
|
544 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
545 |
+
"β concatenate_2 β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β bi_lstm_1[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">1</span>], β\n",
|
546 |
+
"β (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Concatenate</span>) β β β bi_lstm_1[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">3</span>] β\n",
|
547 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
548 |
+
"β attention_1 β [(<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">64</span>), β <span style=\"color: #00af00; text-decoration-color: #00af00\">1,311</span> β bi_lstm_1[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>], β\n",
|
549 |
+
"β (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Attention</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">1</span>)] β β concatenate_2[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>]β¦ β\n",
|
550 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
551 |
+
"β dense_8 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">20</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">1,300</span> β attention_1[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>] β\n",
|
552 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
553 |
+
"β dropout_1 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dropout</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">20</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> β dense_8[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>] β\n",
|
554 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
555 |
+
"β dense_9 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">8</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">168</span> β dropout_1[<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>][<span style=\"color: #00af00; text-decoration-color: #00af00\">0</span>] β\n",
|
556 |
+
"βββββββββββββββββββββββ΄ββββββββββββββββββββ΄βββββββββββββ΄ββββββββββββββββββββ\n",
|
557 |
+
"</pre>\n"
|
558 |
+
],
|
559 |
+
"text/plain": [
|
560 |
+
"βββββββββββββββββββββββ³ββββββββββββββββββββ³βββββββββββββ³ββββββββββββββββββββ\n",
|
561 |
+
"β\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0mβ\n",
|
562 |
+
"β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
|
563 |
+
"β input_layer_1 β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m) β \u001b[38;5;34m0\u001b[0m β - β\n",
|
564 |
+
"β (\u001b[38;5;33mInputLayer\u001b[0m) β β β β\n",
|
565 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
566 |
+
"β embedding_1 β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m28\u001b[0m) β \u001b[38;5;34m168,000\u001b[0m β input_layer_1[\u001b[38;5;34m0\u001b[0m]β¦ β\n",
|
567 |
+
"β (\u001b[38;5;33mEmbedding\u001b[0m) β β β β\n",
|
568 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
569 |
+
"β bi_lstm_0 β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m64\u001b[0m) β \u001b[38;5;34m15,616\u001b[0m β embedding_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] β\n",
|
570 |
+
"β (\u001b[38;5;33mBidirectional\u001b[0m) β β β β\n",
|
571 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
572 |
+
"β bi_lstm_1 β [(\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m64\u001b[0m), β \u001b[38;5;34m24,832\u001b[0m β bi_lstm_0[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] β\n",
|
573 |
+
"β (\u001b[38;5;33mBidirectional\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m), β β β\n",
|
574 |
+
"β β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m), β β β\n",
|
575 |
+
"β β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m), β β β\n",
|
576 |
+
"β β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m)] β β β\n",
|
577 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
578 |
+
"β concatenate_2 β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) β \u001b[38;5;34m0\u001b[0m β bi_lstm_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m1\u001b[0m], β\n",
|
579 |
+
"β (\u001b[38;5;33mConcatenate\u001b[0m) β β β bi_lstm_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m3\u001b[0m] β\n",
|
580 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
581 |
+
"β attention_1 β [(\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m), β \u001b[38;5;34m1,311\u001b[0m β bi_lstm_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m], β\n",
|
582 |
+
"β (\u001b[38;5;33mAttention\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m, \u001b[38;5;34m1\u001b[0m)] β β concatenate_2[\u001b[38;5;34m0\u001b[0m]β¦ β\n",
|
583 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
584 |
+
"β dense_8 (\u001b[38;5;33mDense\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m) β \u001b[38;5;34m1,300\u001b[0m β attention_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] β\n",
|
585 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
586 |
+
"β dropout_1 (\u001b[38;5;33mDropout\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m20\u001b[0m) β \u001b[38;5;34m0\u001b[0m β dense_8[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] β\n",
|
587 |
+
"βββββββββββββββββββββββΌββββββββββββββββββββΌβββββββββββββΌββββββββββββββββββββ€\n",
|
588 |
+
"β dense_9 (\u001b[38;5;33mDense\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m8\u001b[0m) β \u001b[38;5;34m168\u001b[0m β dropout_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] β\n",
|
589 |
+
"βββββββββββββββββββββββ΄ββββββββββββββββββββ΄βββββββββββββ΄ββββββββββββββββββββ\n"
|
590 |
+
]
|
591 |
+
},
|
592 |
+
"metadata": {},
|
593 |
+
"output_type": "display_data"
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"data": {
|
597 |
+
"text/html": [
|
598 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">211,227</span> (825.11 KB)\n",
|
599 |
+
"</pre>\n"
|
600 |
+
],
|
601 |
+
"text/plain": [
|
602 |
+
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m211,227\u001b[0m (825.11 KB)\n"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
"metadata": {},
|
606 |
+
"output_type": "display_data"
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"data": {
|
610 |
+
"text/html": [
|
611 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">211,227</span> (825.11 KB)\n",
|
612 |
+
"</pre>\n"
|
613 |
+
],
|
614 |
+
"text/plain": [
|
615 |
+
"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m211,227\u001b[0m (825.11 KB)\n"
|
616 |
+
]
|
617 |
+
},
|
618 |
+
"metadata": {},
|
619 |
+
"output_type": "display_data"
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"data": {
|
623 |
+
"text/html": [
|
624 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
|
625 |
+
"</pre>\n"
|
626 |
+
],
|
627 |
+
"text/plain": [
|
628 |
+
"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
|
629 |
+
]
|
630 |
+
},
|
631 |
+
"metadata": {},
|
632 |
+
"output_type": "display_data"
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"name": "stdout",
|
636 |
+
"output_type": "stream",
|
637 |
+
"text": [
|
638 |
+
"None\n"
|
639 |
+
]
|
640 |
+
}
|
641 |
+
],
|
642 |
+
"source": [
|
643 |
+
"# summarize layers\n",
|
644 |
+
"print(model.summary())"
|
645 |
+
]
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"cell_type": "code",
|
649 |
+
"execution_count": 39,
|
650 |
+
"metadata": {},
|
651 |
+
"outputs": [],
|
652 |
+
"source": [
|
653 |
+
"from keras.callbacks import EarlyStopping\n",
|
654 |
+
"from keras import backend \n",
|
655 |
+
"\n",
|
656 |
+
"es = EarlyStopping(monitor='accuracy', mode='min', verbose=1, patience=5)\n",
|
657 |
+
"model.compile(loss='SparseCategoricalCrossentropy', optimizer='adam', metrics=['accuracy'])\n"
|
658 |
+
]
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"cell_type": "code",
|
662 |
+
"execution_count": 40,
|
663 |
+
"metadata": {},
|
664 |
+
"outputs": [],
|
665 |
+
"source": [
|
666 |
+
"\n",
|
667 |
+
"import numpy as np\n",
|
668 |
+
"\n",
|
669 |
+
"X_train_np = np.array(X_train)\n",
|
670 |
+
"y_train_np = np.array(y_train)"
|
671 |
+
]
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"cell_type": "code",
|
675 |
+
"execution_count": 42,
|
676 |
+
"metadata": {},
|
677 |
+
"outputs": [
|
678 |
+
{
|
679 |
+
"name": "stdout",
|
680 |
+
"output_type": "stream",
|
681 |
+
"text": [
|
682 |
+
"Epoch 1/30\n",
|
683 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 39ms/step - accuracy: 0.7935 - loss: 0.6349\n",
|
684 |
+
"Epoch 2/30\n",
|
685 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 38ms/step - accuracy: 0.8229 - loss: 0.5661\n",
|
686 |
+
"Epoch 3/30\n",
|
687 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 44ms/step - accuracy: 0.8691 - loss: 0.4346\n",
|
688 |
+
"Epoch 4/30\n",
|
689 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 39ms/step - accuracy: 0.8974 - loss: 0.3836\n",
|
690 |
+
"Epoch 5/30\n",
|
691 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 52ms/step - accuracy: 0.9059 - loss: 0.3363\n",
|
692 |
+
"Epoch 6/30\n",
|
693 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 55ms/step - accuracy: 0.9146 - loss: 0.2993\n",
|
694 |
+
"Epoch 7/30\n",
|
695 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 54ms/step - accuracy: 0.9364 - loss: 0.2439\n",
|
696 |
+
"Epoch 8/30\n",
|
697 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 48ms/step - accuracy: 0.9365 - loss: 0.2423\n",
|
698 |
+
"Epoch 9/30\n",
|
699 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 40ms/step - accuracy: 0.9464 - loss: 0.1978\n",
|
700 |
+
"Epoch 10/30\n",
|
701 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 39ms/step - accuracy: 0.9516 - loss: 0.1880\n",
|
702 |
+
"Epoch 11/30\n",
|
703 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9478 - loss: 0.1854\n",
|
704 |
+
"Epoch 12/30\n",
|
705 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 59ms/step - accuracy: 0.9545 - loss: 0.1586\n",
|
706 |
+
"Epoch 13/30\n",
|
707 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 59ms/step - accuracy: 0.9563 - loss: 0.1485\n",
|
708 |
+
"Epoch 14/30\n",
|
709 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 61ms/step - accuracy: 0.9598 - loss: 0.1378\n",
|
710 |
+
"Epoch 15/30\n",
|
711 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 52ms/step - accuracy: 0.9575 - loss: 0.1429\n",
|
712 |
+
"Epoch 16/30\n",
|
713 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 60ms/step - accuracy: 0.9576 - loss: 0.1285\n",
|
714 |
+
"Epoch 17/30\n",
|
715 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 53ms/step - accuracy: 0.9585 - loss: 0.1384\n",
|
716 |
+
"Epoch 18/30\n",
|
717 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 45ms/step - accuracy: 0.9597 - loss: 0.1333\n",
|
718 |
+
"Epoch 19/30\n",
|
719 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 51ms/step - accuracy: 0.9671 - loss: 0.1189\n",
|
720 |
+
"Epoch 20/30\n",
|
721 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 52ms/step - accuracy: 0.9709 - loss: 0.1102\n",
|
722 |
+
"Epoch 21/30\n",
|
723 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 58ms/step - accuracy: 0.9691 - loss: 0.1136\n",
|
724 |
+
"Epoch 22/30\n",
|
725 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 59ms/step - accuracy: 0.9774 - loss: 0.0918\n",
|
726 |
+
"Epoch 23/30\n",
|
727 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 63ms/step - accuracy: 0.9777 - loss: 0.0876\n",
|
728 |
+
"Epoch 24/30\n",
|
729 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 59ms/step - accuracy: 0.9841 - loss: 0.0615\n",
|
730 |
+
"Epoch 25/30\n",
|
731 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 43ms/step - accuracy: 0.9781 - loss: 0.0804\n",
|
732 |
+
"Epoch 26/30\n",
|
733 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 43ms/step - accuracy: 0.9724 - loss: 0.0936\n",
|
734 |
+
"Epoch 27/30\n",
|
735 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 42ms/step - accuracy: 0.9711 - loss: 0.1026\n",
|
736 |
+
"Epoch 28/30\n",
|
737 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 44ms/step - accuracy: 0.9728 - loss: 0.0933\n",
|
738 |
+
"Epoch 29/30\n",
|
739 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 49ms/step - accuracy: 0.9771 - loss: 0.0772\n",
|
740 |
+
"Epoch 30/30\n",
|
741 |
+
"\u001b[1m39/39\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 55ms/step - accuracy: 0.9771 - loss: 0.0940\n"
|
742 |
+
]
|
743 |
+
}
|
744 |
+
],
|
745 |
+
"source": [
|
746 |
+
"BATCH_SIZE = 100\n",
|
747 |
+
"EPOCHS = 30\n",
|
748 |
+
"history = model.fit(X_train_np,y_train_np, shuffle=True,\n",
|
749 |
+
" batch_size=BATCH_SIZE, verbose=1,\n",
|
750 |
+
" epochs=EPOCHS)#, callbacks=[es])"
|
751 |
+
]
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"cell_type": "code",
|
755 |
+
"execution_count": 43,
|
756 |
+
"metadata": {},
|
757 |
+
"outputs": [],
|
758 |
+
"source": [
|
759 |
+
"def classifier(input_text,candidate_labels):\n",
|
760 |
+
" #PREPROCESS THE INPUT TEXT\n",
|
761 |
+
" input_text_cleaned = clean_text(input_text)\n",
|
762 |
+
" input_sequence = tokenizer.texts_to_sequences([input_text_cleaned])\n",
|
763 |
+
" input_padded = pad_sequences(input_sequence, maxlen = MAX_LEN, padding = 'post')\n",
|
764 |
+
" #PREDICTION\n",
|
765 |
+
" prediction = np.ravel(model.predict(input_padded))\n",
|
766 |
+
" return {'sequence': input_text,'labels': candidate_labels,'scores': list(prediction)}\n"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"cell_type": "code",
|
771 |
+
"execution_count": 44,
|
772 |
+
"metadata": {},
|
773 |
+
"outputs": [],
|
774 |
+
"source": [
|
775 |
+
"candidate_labels = [\n",
|
776 |
+
" \"Not related to climate change disinformation\",\n",
|
777 |
+
" \"Climate change is not real and not happening\",\n",
|
778 |
+
" \"Climate change is not human-induced\",\n",
|
779 |
+
" \"Climate change impacts are not that bad\",\n",
|
780 |
+
" \"Climate change solutions are harmful and unnecessary\",\n",
|
781 |
+
" \"Climate change science is unreliable\",\n",
|
782 |
+
" \"Climate change proponents are biased\",\n",
|
783 |
+
" \"Fossil fuels are needed to address climate change\"\n",
|
784 |
+
"]"
|
785 |
+
]
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"cell_type": "code",
|
789 |
+
"execution_count": 48,
|
790 |
+
"metadata": {},
|
791 |
+
"outputs": [
|
792 |
+
{
|
793 |
+
"data": {
|
794 |
+
"text/plain": [
|
795 |
+
"[6, 6, 4, 0, 5, 5, 2, 4, 1, 0]"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
"execution_count": 48,
|
799 |
+
"metadata": {},
|
800 |
+
"output_type": "execute_result"
|
801 |
+
}
|
802 |
+
],
|
803 |
+
"source": [
|
804 |
+
"true_labels[:10]"
|
805 |
+
]
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"cell_type": "code",
|
809 |
+
"execution_count": 49,
|
810 |
+
"metadata": {},
|
811 |
+
"outputs": [
|
812 |
+
{
|
813 |
+
"data": {
|
814 |
+
"text/plain": [
|
815 |
+
"[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]"
|
816 |
+
]
|
817 |
+
},
|
818 |
+
"execution_count": 49,
|
819 |
+
"metadata": {},
|
820 |
+
"output_type": "execute_result"
|
821 |
+
}
|
822 |
+
],
|
823 |
+
"source": [
|
824 |
+
"predictions[:10]"
|
825 |
+
]
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"cell_type": "code",
|
829 |
+
"execution_count": null,
|
830 |
+
"metadata": {},
|
831 |
+
"outputs": [],
|
832 |
+
"source": [
|
833 |
+
"# Start tracking emissions\n",
|
834 |
+
"tracker.start()\n",
|
835 |
+
"tracker.start_task(\"inference\")\n"
|
836 |
+
]
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"cell_type": "code",
|
840 |
+
"execution_count": 46,
|
841 |
+
"metadata": {},
|
842 |
+
"outputs": [],
|
843 |
+
"source": [
|
844 |
+
"%%capture\n",
|
845 |
+
"\n",
|
846 |
+
"from tqdm.auto import tqdm\n",
|
847 |
+
"predictions = []\n",
|
848 |
+
"\n",
|
849 |
+
"for i, text in tqdm(enumerate(test_dataset[\"quote\"])):\n",
|
850 |
+
"\n",
|
851 |
+
" result = classifier(text, candidate_labels)\n",
|
852 |
+
"\n",
|
853 |
+
" # Get index of highest scoring label\n",
|
854 |
+
"\n",
|
855 |
+
" pred_label = candidate_labels.index(result[\"labels\"][0])\n",
|
856 |
+
"\n",
|
857 |
+
" predictions.append(pred_label)\n"
|
858 |
+
]
|
859 |
+
},
|
860 |
+
{
|
861 |
+
"cell_type": "code",
|
862 |
+
"execution_count": null,
|
863 |
+
"metadata": {},
|
864 |
+
"outputs": [],
|
865 |
+
"source": [
|
866 |
+
"# Stop tracking emissions\n",
|
867 |
+
"emissions_data = tracker.stop_task()\n",
|
868 |
+
"emissions_data"
|
869 |
+
]
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"cell_type": "code",
|
873 |
+
"execution_count": 47,
|
874 |
+
"metadata": {},
|
875 |
+
"outputs": [
|
876 |
+
{
|
877 |
+
"data": {
|
878 |
+
"text/plain": [
|
879 |
+
"0.27"
|
880 |
+
]
|
881 |
+
},
|
882 |
+
"execution_count": 47,
|
883 |
+
"metadata": {},
|
884 |
+
"output_type": "execute_result"
|
885 |
+
}
|
886 |
+
],
|
887 |
+
"source": [
|
888 |
+
"# Calculate accuracy\n",
|
889 |
+
"accuracy = accuracy_score(true_labels[:100], predictions[:100])\n",
|
890 |
+
"accuracy"
|
891 |
+
]
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"cell_type": "code",
|
895 |
+
"execution_count": null,
|
896 |
+
"metadata": {},
|
897 |
+
"outputs": [],
|
898 |
+
"source": [
|
899 |
+
"# Prepare results dictionary\n",
|
900 |
+
"results = {\n",
|
901 |
+
" \"submission_timestamp\": datetime.now().isoformat(),\n",
|
902 |
+
" \"accuracy\": float(accuracy),\n",
|
903 |
+
" \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
|
904 |
+
" \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
|
905 |
+
" \"emissions_data\": clean_emissions_data(emissions_data),\n",
|
906 |
+
" \"dataset_config\": {\n",
|
907 |
+
" \"dataset_name\": request.dataset_name,\n",
|
908 |
+
" \"test_size\": request.test_size,\n",
|
909 |
+
" \"test_seed\": request.test_seed\n",
|
910 |
+
" }\n",
|
911 |
+
"}\n",
|
912 |
+
"\n",
|
913 |
+
"results"
|
914 |
+
]
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"cell_type": "code",
|
918 |
+
"execution_count": null,
|
919 |
+
"metadata": {},
|
920 |
+
"outputs": [],
|
921 |
+
"source": []
|
922 |
+
}
|
923 |
+
],
|
924 |
+
"metadata": {
|
925 |
+
"kernelspec": {
|
926 |
+
"display_name": "Python 3 (ipykernel)",
|
927 |
+
"language": "python",
|
928 |
+
"name": "python3"
|
929 |
+
},
|
930 |
+
"language_info": {
|
931 |
+
"codemirror_mode": {
|
932 |
+
"name": "ipython",
|
933 |
+
"version": 3
|
934 |
+
},
|
935 |
+
"file_extension": ".py",
|
936 |
+
"mimetype": "text/x-python",
|
937 |
+
"name": "python",
|
938 |
+
"nbconvert_exporter": "python",
|
939 |
+
"pygments_lexer": "ipython3",
|
940 |
+
"version": "3.12.8"
|
941 |
+
}
|
942 |
+
},
|
943 |
+
"nbformat": 4,
|
944 |
+
"nbformat_minor": 4
|
945 |
+
}
|