File size: 3,959 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
 
 
70f5f26
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
d248f3d
70f5f26
4d6e8c2
 
 
 
d248f3d
 
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d248f3d
4d6e8c2
 
d248f3d
 
 
 
 
4d6e8c2
d248f3d
 
 
 
4d6e8c2
 
 
70f5f26
 
 
 
 
4d6e8c2
 
 
70f5f26
d248f3d
 
 
 
70f5f26
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Logistic regression
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    from sklearn.linear_model import LogisticRegression
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.model_selection import train_test_split
    from sklearn import metrics
    from datetime import datetime

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    #train_test = dataset.train_test_split(test_size=.33, seed=42)
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]

    #test_dataset = train_test["test"]
    #train_dataset = train_test["train"]

    tfidf_vect = TfidfVectorizer(stop_words = 'english')
    
    tfidf_train = tfidf_vect.fit_transform(train_dataset['quote'])
    tfidf_test = tfidf_vect.transform(test_dataset['quote'])


    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
    #--------------------------------------------------------------------------------------------   
    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]

    LR = LogisticRegression(class_weight='balanced', max_iter=20, random_state=1234,
                   solver='liblinear')
    LR.fit(pd.DataFrame.sparse.from_spmatrix(tfidf_train), pd.DataFrame(y_train_v))
    predictions=LR.predict(pd.DataFrame.sparse.from_spmatrix(tfidf_test))
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, predictions)
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results