Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,106 +1,27 @@
|
|
1 |
-
from fastapi import
|
2 |
-
from
|
3 |
-
from
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
async def
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
# Get space info
|
27 |
-
username, space_url = get_space_info()
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
# Define the label mapping
|
33 |
-
LABEL_MAPPING = {
|
34 |
-
"0_not_relevant": 0,
|
35 |
-
"1_not_happening": 1,
|
36 |
-
"2_not_human": 2,
|
37 |
-
"3_not_bad": 3,
|
38 |
-
"4_solutions_harmful_unnecessary": 4,
|
39 |
-
"5_science_unreliable": 5,
|
40 |
-
"6_proponents_biased": 6,
|
41 |
-
"7_fossil_fuels_needed": 7
|
42 |
-
}
|
43 |
-
|
44 |
-
# Load and prepare the dataset
|
45 |
-
dataset = load_dataset(request.dataset_name)
|
46 |
-
|
47 |
-
# Convert string labels to integers
|
48 |
-
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
49 |
-
|
50 |
-
# Split dataset
|
51 |
-
#train_test = dataset.train_test_split(test_size=.33, seed=42)
|
52 |
-
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
53 |
-
test_dataset = train_test["test"]
|
54 |
-
|
55 |
-
tfidf_vect = TfidfVectorizer(stop_words = 'english')
|
56 |
-
|
57 |
-
tfidf_train = tfidf_vect.fit_transform(train_dataset['quote'])
|
58 |
-
tfidf_test = tfidf_vect.transform(test_dataset['quote'])
|
59 |
-
|
60 |
-
|
61 |
-
# Start tracking emissions
|
62 |
-
tracker.start()
|
63 |
-
tracker.start_task("inference")
|
64 |
-
|
65 |
-
#--------------------------------------------------------------------------------------------
|
66 |
-
# YOUR MODEL INFERENCE CODE HERE
|
67 |
-
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
68 |
-
#--------------------------------------------------------------------------------------------
|
69 |
-
|
70 |
-
# Make random predictions (placeholder for actual model inference)
|
71 |
-
true_labels = test_dataset["label"]
|
72 |
-
|
73 |
-
LR = LogisticRegression(class_weight='balanced', max_iter=20, random_state=1234,
|
74 |
-
solver='liblinear')
|
75 |
-
LR.fit(pd.DataFrame.sparse.from_spmatrix(tfidf_train), pd.DataFrame(y_train_v))
|
76 |
-
predictions=LR.predict(pd.DataFrame.sparse.from_spmatrix(tfidf_test))
|
77 |
-
#--------------------------------------------------------------------------------------------
|
78 |
-
# YOUR MODEL INFERENCE STOPS HERE
|
79 |
-
#--------------------------------------------------------------------------------------------
|
80 |
-
|
81 |
-
|
82 |
-
# Stop tracking emissions
|
83 |
-
emissions_data = tracker.stop_task()
|
84 |
-
|
85 |
-
# Calculate accuracy
|
86 |
-
accuracy = accuracy_score(true_labels, predictions)
|
87 |
-
|
88 |
-
# Prepare results dictionary
|
89 |
-
results = {
|
90 |
-
"username": username,
|
91 |
-
"space_url": space_url,
|
92 |
-
"submission_timestamp": datetime.now().isoformat(),
|
93 |
-
"model_description": DESCRIPTION,
|
94 |
-
"accuracy": float(accuracy),
|
95 |
-
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
96 |
-
"emissions_gco2eq": emissions_data.emissions * 1000,
|
97 |
-
"emissions_data": clean_emissions_data(emissions_data),
|
98 |
-
"api_route": ROUTE,
|
99 |
-
"dataset_config": {
|
100 |
-
"dataset_name": request.dataset_name,
|
101 |
-
"test_size": request.test_size,
|
102 |
-
"test_seed": request.test_seed
|
103 |
}
|
104 |
-
}
|
105 |
-
|
106 |
-
return results
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from tasks import text, image, audio
|
4 |
+
|
5 |
+
# Load environment variables
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
app = FastAPI(
|
9 |
+
title="Frugal AI Challenge API",
|
10 |
+
description="API for the Frugal AI Challenge evaluation endpoints"
|
11 |
+
)
|
12 |
+
|
13 |
+
# Include all routers
|
14 |
+
app.include_router(text.router)
|
15 |
+
app.include_router(image.router)
|
16 |
+
app.include_router(audio.router)
|
17 |
+
|
18 |
+
@app.get("/")
|
19 |
+
async def root():
|
20 |
+
return {
|
21 |
+
"message": "Welcome to the Frugal AI Challenge API",
|
22 |
+
"endpoints": {
|
23 |
+
"text": "/text - Text classification task",
|
24 |
+
"image": "/image - Image classification task (coming soon)",
|
25 |
+
"audio": "/audio - Audio classification task (coming soon)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
}
|
27 |
+
}
|
|
|
|