Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
README.md
CHANGED
|
@@ -8,11 +8,11 @@ pinned: false
|
|
| 8 |
---
|
| 9 |
|
| 10 |
|
| 11 |
-
#
|
| 12 |
|
| 13 |
## Model Description
|
| 14 |
|
| 15 |
-
This is a
|
| 16 |
|
| 17 |
### Intended Use
|
| 18 |
|
|
@@ -40,7 +40,7 @@ The model uses the QuotaClimat/frugalaichallenge-text-train dataset:
|
|
| 40 |
## Performance
|
| 41 |
|
| 42 |
### Metrics
|
| 43 |
-
- **Accuracy**: ~
|
| 44 |
- **Environmental Impact**:
|
| 45 |
- Emissions tracked in gCO2eq
|
| 46 |
- Energy consumption tracked in Wh
|
|
@@ -57,10 +57,10 @@ Environmental impact is tracked using CodeCarbon, measuring:
|
|
| 57 |
This tracking helps establish a baseline for the environmental impact of model deployment and inference.
|
| 58 |
|
| 59 |
## Limitations
|
| 60 |
-
- Makes
|
| 61 |
- No learning or pattern recognition
|
| 62 |
-
-
|
| 63 |
-
- Serves only as a baseline reference
|
| 64 |
- Not suitable for any real-world applications
|
| 65 |
|
| 66 |
## Ethical Considerations
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
|
| 11 |
+
# Logistic regression Model for Climate Disinformation Classification
|
| 12 |
|
| 13 |
## Model Description
|
| 14 |
|
| 15 |
+
This is a Logistic regression baseline model for the Frugal AI Challenge 2024, specifically for the text classification task of identifying climate disinformation. The model serves as a performance floor.
|
| 16 |
|
| 17 |
### Intended Use
|
| 18 |
|
|
|
|
| 40 |
## Performance
|
| 41 |
|
| 42 |
### Metrics
|
| 43 |
+
- **Accuracy**: ~63.5%
|
| 44 |
- **Environmental Impact**:
|
| 45 |
- Emissions tracked in gCO2eq
|
| 46 |
- Energy consumption tracked in Wh
|
|
|
|
| 57 |
This tracking helps establish a baseline for the environmental impact of model deployment and inference.
|
| 58 |
|
| 59 |
## Limitations
|
| 60 |
+
- Makes Logistic regression predictions
|
| 61 |
- No learning or pattern recognition
|
| 62 |
+
- Input text vectorized
|
| 63 |
+
- Serves only as a LR baseline reference
|
| 64 |
- Not suitable for any real-world applications
|
| 65 |
|
| 66 |
## Ethical Considerations
|
app.py
CHANGED
|
@@ -1,27 +1,106 @@
|
|
| 1 |
-
from fastapi import
|
| 2 |
-
from
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
async def
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
}
|
| 27 |
-
}
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import APIRouter
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from sklearn.metrics import accuracy_score
|
| 5 |
+
from sklearn.linear_model import LogisticRegression
|
| 6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 7 |
+
from sklearn.model_selection import train_test_split
|
| 8 |
+
|
| 9 |
+
from .utils.evaluation import TextEvaluationRequest
|
| 10 |
+
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
| 11 |
+
|
| 12 |
+
router = APIRouter()
|
| 13 |
+
|
| 14 |
+
DESCRIPTION = "Logistic Regression"
|
| 15 |
+
ROUTE = "/text"
|
| 16 |
+
|
| 17 |
+
@router.post(ROUTE, tags=["Text Task"],
|
| 18 |
+
description=DESCRIPTION)
|
| 19 |
+
async def evaluate_text(request: TextEvaluationRequest):
|
| 20 |
+
"""
|
| 21 |
+
Evaluate text classification for climate disinformation detection.
|
| 22 |
+
|
| 23 |
+
Current Model: Logistic regression
|
| 24 |
+
- Used as a baseline for comparison
|
| 25 |
+
"""
|
| 26 |
+
# Get space info
|
| 27 |
+
username, space_url = get_space_info()
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Define the label mapping
|
| 33 |
+
LABEL_MAPPING = {
|
| 34 |
+
"0_not_relevant": 0,
|
| 35 |
+
"1_not_happening": 1,
|
| 36 |
+
"2_not_human": 2,
|
| 37 |
+
"3_not_bad": 3,
|
| 38 |
+
"4_solutions_harmful_unnecessary": 4,
|
| 39 |
+
"5_science_unreliable": 5,
|
| 40 |
+
"6_proponents_biased": 6,
|
| 41 |
+
"7_fossil_fuels_needed": 7
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
# Load and prepare the dataset
|
| 45 |
+
dataset = load_dataset(request.dataset_name)
|
| 46 |
+
|
| 47 |
+
# Convert string labels to integers
|
| 48 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
| 49 |
+
|
| 50 |
+
# Split dataset
|
| 51 |
+
#train_test = dataset.train_test_split(test_size=.33, seed=42)
|
| 52 |
+
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 53 |
+
test_dataset = train_test["test"]
|
| 54 |
+
|
| 55 |
+
tfidf_vect = TfidfVectorizer(stop_words = 'english')
|
| 56 |
+
|
| 57 |
+
tfidf_train = tfidf_vect.fit_transform(train_dataset['quote'])
|
| 58 |
+
tfidf_test = tfidf_vect.transform(test_dataset['quote'])
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# Start tracking emissions
|
| 62 |
+
tracker.start()
|
| 63 |
+
tracker.start_task("inference")
|
| 64 |
+
|
| 65 |
+
#--------------------------------------------------------------------------------------------
|
| 66 |
+
# YOUR MODEL INFERENCE CODE HERE
|
| 67 |
+
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
| 68 |
+
#--------------------------------------------------------------------------------------------
|
| 69 |
+
|
| 70 |
+
# Make random predictions (placeholder for actual model inference)
|
| 71 |
+
true_labels = test_dataset["label"]
|
| 72 |
+
|
| 73 |
+
LR = LogisticRegression(class_weight='balanced', max_iter=20, random_state=1234,
|
| 74 |
+
solver='liblinear')
|
| 75 |
+
LR.fit(pd.DataFrame.sparse.from_spmatrix(tfidf_train), pd.DataFrame(y_train_v))
|
| 76 |
+
predictions=LR.predict(pd.DataFrame.sparse.from_spmatrix(tfidf_test))
|
| 77 |
+
#--------------------------------------------------------------------------------------------
|
| 78 |
+
# YOUR MODEL INFERENCE STOPS HERE
|
| 79 |
+
#--------------------------------------------------------------------------------------------
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Stop tracking emissions
|
| 83 |
+
emissions_data = tracker.stop_task()
|
| 84 |
+
|
| 85 |
+
# Calculate accuracy
|
| 86 |
+
accuracy = accuracy_score(true_labels, predictions)
|
| 87 |
+
|
| 88 |
+
# Prepare results dictionary
|
| 89 |
+
results = {
|
| 90 |
+
"username": username,
|
| 91 |
+
"space_url": space_url,
|
| 92 |
+
"submission_timestamp": datetime.now().isoformat(),
|
| 93 |
+
"model_description": DESCRIPTION,
|
| 94 |
+
"accuracy": float(accuracy),
|
| 95 |
+
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
|
| 96 |
+
"emissions_gco2eq": emissions_data.emissions * 1000,
|
| 97 |
+
"emissions_data": clean_emissions_data(emissions_data),
|
| 98 |
+
"api_route": ROUTE,
|
| 99 |
+
"dataset_config": {
|
| 100 |
+
"dataset_name": request.dataset_name,
|
| 101 |
+
"test_size": request.test_size,
|
| 102 |
+
"test_seed": request.test_seed
|
| 103 |
}
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
return results
|