Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +9 -7
tasks/text.py
CHANGED
|
@@ -51,11 +51,11 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 51 |
#train_test = dataset.train_test_split(test_size=.33, seed=42)
|
| 52 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 53 |
test_dataset = train_test["test"]
|
| 54 |
-
|
| 55 |
-
tfidf_vect = TfidfVectorizer(stop_words = 'english')
|
| 56 |
|
| 57 |
-
tfidf_train = tfidf_vect.fit_transform(train_dataset['quote'])
|
| 58 |
-
tfidf_test = tfidf_vect.transform(test_dataset['quote'])
|
| 59 |
|
| 60 |
|
| 61 |
# Start tracking emissions
|
|
@@ -69,11 +69,13 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
| 69 |
|
| 70 |
# Make random predictions (placeholder for actual model inference)
|
| 71 |
true_labels = test_dataset["label"]
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
LR = LogisticRegression(class_weight='balanced', max_iter=20, random_state=1234,
|
| 74 |
solver='liblinear')
|
| 75 |
-
LR.fit(pd.DataFrame.sparse.from_spmatrix(tfidf_train), pd.DataFrame(y_train_v))
|
| 76 |
-
predictions=LR.predict(pd.DataFrame.sparse.from_spmatrix(tfidf_test))
|
| 77 |
#--------------------------------------------------------------------------------------------
|
| 78 |
# YOUR MODEL INFERENCE STOPS HERE
|
| 79 |
#--------------------------------------------------------------------------------------------
|
|
|
|
| 51 |
#train_test = dataset.train_test_split(test_size=.33, seed=42)
|
| 52 |
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
| 53 |
test_dataset = train_test["test"]
|
| 54 |
+
|
| 55 |
+
#tfidf_vect = TfidfVectorizer(stop_words = 'english')
|
| 56 |
|
| 57 |
+
#tfidf_train = tfidf_vect.fit_transform(train_dataset['quote'])
|
| 58 |
+
#tfidf_test = tfidf_vect.transform(test_dataset['quote'])
|
| 59 |
|
| 60 |
|
| 61 |
# Start tracking emissions
|
|
|
|
| 69 |
|
| 70 |
# Make random predictions (placeholder for actual model inference)
|
| 71 |
true_labels = test_dataset["label"]
|
| 72 |
+
|
| 73 |
+
predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
|
| 74 |
|
| 75 |
+
#LR = LogisticRegression(class_weight='balanced', max_iter=20, random_state=1234,
|
| 76 |
solver='liblinear')
|
| 77 |
+
#LR.fit(pd.DataFrame.sparse.from_spmatrix(tfidf_train), pd.DataFrame(y_train_v))
|
| 78 |
+
#predictions=LR.predict(pd.DataFrame.sparse.from_spmatrix(tfidf_test))
|
| 79 |
#--------------------------------------------------------------------------------------------
|
| 80 |
# YOUR MODEL INFERENCE STOPS HERE
|
| 81 |
#--------------------------------------------------------------------------------------------
|