laureBe commited on
Commit
ad1b79a
·
verified ·
1 Parent(s): d248f3d

Udate LR model

Browse files
Files changed (1) hide show
  1. tasks/text.py +6 -10
tasks/text.py CHANGED
@@ -2,14 +2,16 @@ from fastapi import APIRouter
2
  from datetime import datetime
3
  from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score
5
- import random
 
 
6
 
7
  from .utils.evaluation import TextEvaluationRequest
8
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
9
 
10
  router = APIRouter()
11
 
12
- DESCRIPTION = "Random Baseline"
13
  ROUTE = "/text"
14
 
15
  @router.post(ROUTE, tags=["Text Task"],
@@ -24,11 +26,8 @@ async def evaluate_text(request: TextEvaluationRequest):
24
  # Get space info
25
  username, space_url = get_space_info()
26
 
27
- from sklearn.linear_model import LogisticRegression
28
- from sklearn.feature_extraction.text import TfidfVectorizer
29
- from sklearn.model_selection import train_test_split
30
- from sklearn import metrics
31
- from datetime import datetime
32
 
33
  # Define the label mapping
34
  LABEL_MAPPING = {
@@ -53,9 +52,6 @@ async def evaluate_text(request: TextEvaluationRequest):
53
  train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
54
  test_dataset = train_test["test"]
55
 
56
- #test_dataset = train_test["test"]
57
- #train_dataset = train_test["train"]
58
-
59
  tfidf_vect = TfidfVectorizer(stop_words = 'english')
60
 
61
  tfidf_train = tfidf_vect.fit_transform(train_dataset['quote'])
 
2
  from datetime import datetime
3
  from datasets import load_dataset
4
  from sklearn.metrics import accuracy_score
5
+ from sklearn.linear_model import LogisticRegression
6
+ from sklearn.feature_extraction.text import TfidfVectorizer
7
+ from sklearn.model_selection import train_test_split
8
 
9
  from .utils.evaluation import TextEvaluationRequest
10
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
11
 
12
  router = APIRouter()
13
 
14
+ DESCRIPTION = "Logistic Regression"
15
  ROUTE = "/text"
16
 
17
  @router.post(ROUTE, tags=["Text Task"],
 
26
  # Get space info
27
  username, space_url = get_space_info()
28
 
29
+
30
+
 
 
 
31
 
32
  # Define the label mapping
33
  LABEL_MAPPING = {
 
52
  train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
53
  test_dataset = train_test["test"]
54
 
 
 
 
55
  tfidf_vect = TfidfVectorizer(stop_words = 'english')
56
 
57
  tfidf_train = tfidf_vect.fit_transform(train_dataset['quote'])