Spaces:
Sleeping
Sleeping
File size: 9,088 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f fa57368 2169d6d d679ec7 fa57368 10e9b7d 3db6293 e80aab9 fa57368 31243f4 d679ec7 b64eba5 31243f4 a9f6ccb fcc964f a9f6ccb b64eba5 6f0aec7 4021bf3 fa57368 b90251f 31243f4 fa57368 3c4371f 7e4a06b 1ca9f65 3c4371f 7e4a06b 3c4371f 26798e9 3c4371f 7e4a06b 31243f4 e80aab9 f097f24 b177367 31243f4 66dad6d 31243f4 3c4371f 26798e9 66dad6d b177367 36ed51a c1fd3d2 3c4371f f097f24 7d65c66 31243f4 eccf8e4 31243f4 7d65c66 31243f4 66dad6d 31243f4 3c4371f 26798e9 31243f4 66dad6d e80aab9 31243f4 26798e9 66dad6d 3c4371f 7d65c66 26798e9 66dad6d 7d65c66 31243f4 26798e9 e80aab9 f097f24 b177367 7d65c66 3c4371f 5672afe 66dad6d 31243f4 5672afe 66dad6d 31243f4 66dad6d 31243f4 5672afe 7d65c66 66dad6d 31243f4 7d65c66 31243f4 3c4371f 26798e9 f097f24 31243f4 b177367 7d65c66 3c4371f 31243f4 e80aab9 f097f24 7d65c66 31243f4 66dad6d e80aab9 7d65c66 e80aab9 2169d6d 717c4c8 465aeda 2169d6d 465aeda 31243f4 e80aab9 3c4371f e80aab9 31243f4 33acbfc 26798e9 66dad6d e80aab9 3c4371f 66dad6d e80aab9 3c4371f 66dad6d e80aab9 7d65c66 66dad6d 3c4371f 31243f4 7d65c66 26798e9 66dad6d 3c4371f 26798e9 66dad6d e80aab9 31243f4 26798e9 66dad6d 7d65c66 31243f4 26798e9 e80aab9 f097f24 b64aec2 e80aab9 31243f4 b64aec2 7e4a06b e80aab9 31243f4 a4ba7b0 66dad6d e80aab9 9088b99 b64aec2 7d65c66 e80aab9 31243f4 a4ba7b0 e80aab9 a4ba7b0 fa70e96 a4ba7b0 f097f24 e80aab9 3c4371f b64aec2 3c4371f b64aec2 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 b64aec2 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import json
import copy
from basic_agent import BasicOpenAIAgentWorkflow
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
self.agent = BasicOpenAIAgentWorkflow(
tools=[] # search_web_extract_info
)
self.agent.create_basic_tool_use_agent_state_graph()
print("BasicAgent initialized.")
def __call__(self, question: str) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
answer = self.agent.chat(
question,
verbose=1,
only_final_answer=True
)
print(f"Agent returning answer: {answer}")
return answer
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None, gr.update(interactive=False)
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None, gr.update(interactive=False)
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None, gr.update(interactive=False)
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None, gr.update(interactive=False)
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None, gr.update(interactive=False)
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None, gr.update(interactive=False)
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
question_level = item.get("Level")
question_file_name = item.get("file_name")
print("\nquestion level: ", question_level)
print("question file_name: ", question_file_name)
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text) # todo: send more data (files)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log), gr.update(interactive=False)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
log_file_dict = copy.deepcopy(results_log)
log_file_dict.append({'result_data': result_data})
with open("results_log.json", "w") as results_session_file:
json.dump(log_file_dict, results_session_file)
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df, gr.update(interactive=True)
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df, gr.update(interactive=False)
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df, gr.update(interactive=False)
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df, gr.update(interactive=False)
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df, gr.update(interactive=False)
def download_log():
return "results_log.json"
# Gradio App
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
download_button = gr.Button("Download Evaluation Log", interactive=False)
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table, download_button]
)
file_output = gr.File(label="Download Log File", visible=True)
download_button.click(
fn=download_log,
outputs=file_output
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |