prompt-engine / backend /src /vectorizer.py
Lazar Radojevic
different structure
7af929b
raw
history blame
653 Bytes
from typing import Sequence
import numpy as np
class Vectorizer:
def __init__(self, model) -> None:
"""Initialize the vectorizer with a pre-trained embedding model.
Args:
model: The pre-trained embedding model to use for transforming
prompts.
"""
self.model = model
def transform(self, prompts: Sequence[str]) -> np.ndarray:
"""Transform texts into numerical vectors using the specified
model.
Args:
prompts: The sequence of raw corpus prompts. Returns:
Vectorized
prompts as a numpy array.
"""
return self.model.encode(prompts)