Spaces:
Sleeping
Sleeping
File size: 6,960 Bytes
aed7669 920bbd1 bd5bff8 d2fa748 920bbd1 d2fa748 bd5bff8 aed7669 d53afd7 9449bbc 8ed5109 9449bbc 9f6c7b8 f7ec534 9f6c7b8 d2fa748 8ed5109 d2fa748 9f6c7b8 d2fa748 08fd631 d53afd7 08fd631 c043acf d2fa748 ccd246f d53afd7 9449bbc d2fa748 ccd246f d53afd7 9449bbc d2fa748 9449bbc 4bb5afa d53afd7 9f6c7b8 08fd631 9f6c7b8 4bb5afa 9f6c7b8 4bb5afa 261cee6 b95ef88 261cee6 920bbd1 261cee6 b95ef88 261cee6 b95ef88 261cee6 b95ef88 261cee6 b95ef88 261cee6 4bb5afa 261cee6 1ad7c66 261cee6 b95ef88 261cee6 1ad7c66 b95ef88 261cee6 b95ef88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import json
import sqlite3
import glob
import pandas as pd
import gradio as gr
from datetime import datetime
from typing import Dict, List
# Directory to store SQLite results
db_dir = "results/"
def find_or_download_db():
"""Check if SQLite .db files exist; if not, attempt to download from cloud storage."""
if not os.path.exists(db_dir):
os.makedirs(db_dir)
db_files = glob.glob(os.path.join(db_dir, "*.db"))
# Ensure the random bot database exists
if "results/random_None.db" not in db_files:
raise FileNotFoundError("Please upload results for the random agent in a file named 'random_None.db'.")
return db_files
def extract_agent_info(filename: str):
"""Extract agent type and model name from the filename."""
base_name = os.path.basename(filename).replace(".db", "")
parts = base_name.split("_", 1)
if len(parts) == 2:
agent_type, model_name = parts
else:
agent_type, model_name = parts[0], "Unknown"
return agent_type, model_name
def get_available_games(include_aggregated=True) -> List[str]:
"""Extracts all unique game names from all SQLite databases. Includes 'Aggregated Performance' only when required."""
db_files = find_or_download_db()
game_names = set()
for db_file in db_files:
conn = sqlite3.connect(db_file)
try:
query = "SELECT DISTINCT game_name FROM moves"
df = pd.read_sql_query(query, conn)
game_names.update(df["game_name"].tolist())
except Exception:
pass # Ignore errors if table doesn't exist
finally:
conn.close()
game_list = sorted(game_names) if game_names else ["No Games Found"]
if include_aggregated:
game_list.insert(0, "Aggregated Performance") # Ensure 'Aggregated Performance' is always first
return game_list
def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
"""Extract and aggregate leaderboard stats from all SQLite databases."""
db_files = find_or_download_db()
all_stats = []
for db_file in db_files:
conn = sqlite3.connect(db_file)
agent_type, model_name = extract_agent_info(db_file)
# Skip random agent rows
if agent_type == "random":
conn.close()
continue
if game_name == "Aggregated Performance":
query = "SELECT COUNT(DISTINCT episode) AS games_played, " \
"SUM(reward) AS total_rewards " \
"FROM game_results"
df = pd.read_sql_query(query, conn)
# Compute avg_generation_time across all games instead of a single game
game_query = "SELECT AVG(generation_time) FROM moves"
avg_gen_time = conn.execute(game_query).fetchone()[0] or 0
else:
query = "SELECT COUNT(DISTINCT episode) AS games_played, " \
"SUM(reward) AS total_rewards " \
"FROM game_results WHERE game_name = ?"
df = pd.read_sql_query(query, conn, params=(game_name,))
# Fetch average generation time from moves table
gen_time_query = "SELECT AVG(generation_time) FROM moves WHERE game_name = ?"
avg_gen_time = conn.execute(gen_time_query, (game_name,)).fetchone()[0] or 0
# Keep division by 2 for total rewards
df["total_rewards"] = df["total_rewards"].fillna(0).astype(float) / 2
# Ensure avg_gen_time has decimals
avg_gen_time = round(avg_gen_time, 3)
# Calculate win rate against random bot using moves table
vs_random_query = """
SELECT COUNT(DISTINCT gr.episode) FROM game_results gr
JOIN moves m ON gr.game_name = m.game_name AND gr.episode = m.episode
WHERE m.opponent = 'random_None' AND gr.reward > 0
"""
total_vs_random_query = """
SELECT COUNT(DISTINCT gr.episode) FROM game_results gr
JOIN moves m ON gr.game_name = m.game_name AND gr.episode = m.episode
WHERE m.opponent = 'random_None'
"""
wins_vs_random = conn.execute(vs_random_query).fetchone()[0] or 0
total_vs_random = conn.execute(total_vs_random_query).fetchone()[0] or 0
vs_random_rate = (wins_vs_random / total_vs_random * 100) if total_vs_random > 0 else 0
df.insert(0, "agent_name", model_name) # Ensure agent_name is the first column
df.insert(1, "agent_type", agent_type) # Ensure agent_type is second column
df["avg_generation_time (sec)"] = avg_gen_time
df["win vs_random (%)"] = round(vs_random_rate, 2)
all_stats.append(df)
conn.close()
leaderboard_df = pd.concat(all_stats, ignore_index=True) if all_stats else pd.DataFrame()
if leaderboard_df.empty:
leaderboard_df = pd.DataFrame(columns=["agent_name", "agent_type", "# games", "total rewards", "avg_generation_time (sec)", "win-rate", "win vs_random (%)"])
return leaderboard_df
with gr.Blocks() as interface:
# Tab for playing games against LLMs
with gr.Tab("Game Arena"):
gr.Markdown("# Play Against LLMs\nChoose a game and an opponent to play!")
# Dropdown to select a game, excluding 'Aggregated Performance'
game_dropdown = gr.Dropdown(get_available_games(include_aggregated=False), label="Select a Game")
# Dropdown to choose an opponent (Random Bot or LLM)
opponent_dropdown = gr.Dropdown(["Random Bot", "LLM"], label="Choose Opponent")
# Button to start the game
play_button = gr.Button("Start Game")
# Textbox to display the game log
game_output = gr.Textbox(label="Game Log")
# Event to start the game when the button is clicked
play_button.click(lambda game, opponent: f"Game {game} started against {opponent}", inputs=[game_dropdown, opponent_dropdown], outputs=[game_output])
# Tab for leaderboard and performance tracking
with gr.Tab("Leaderboard"):
gr.Markdown("# LLM Model Leaderboard\nTrack performance across different games!")
# Dropdown to select a game, including 'Aggregated Performance'
leaderboard_game_dropdown = gr.Dropdown(choices=get_available_games(), label="Select Game", value="Aggregated Performance")
# Table to display leaderboard statistics
leaderboard_table = gr.Dataframe(value=extract_leaderboard_stats("Aggregated Performance"), headers=["agent_name", "agent_type", "# games", "total rewards", "avg_generation_time (sec)", "win-rate", "win vs_random (%)"], every=5)
# Update the leaderboard when a new game is selected
leaderboard_game_dropdown.change(fn=extract_leaderboard_stats, inputs=[leaderboard_game_dropdown], outputs=[leaderboard_table])
# Launch the Gradio interface
interface.launch()
|