lcipolina's picture
Create app1.py
aed7669 verified
raw
history blame
3.42 kB
import os
import json
import sqlite3
import glob
import pandas as pd
import gradio as gr
from datetime import datetime
from typing import Dict, List
# Directory to store SQLite results
db_dir = "results/"
def find_or_download_db():
"""Check if SQLite .db files exist; if not, attempt to download from cloud storage."""
if not os.path.exists(db_dir):
os.makedirs(db_dir)
db_files = glob.glob(os.path.join(db_dir, "*.db"))
# Ensure the random bot database exists
if "results/random_None.db" not in db_files:
raise FileNotFoundError("Please upload results for the random agent in a file named 'random_None.db'.")
return db_files
def extract_agent_info(filename: str):
"""Extract agent type and model name from the filename."""
base_name = os.path.basename(filename).replace(".db", "")
parts = base_name.split("_", 1)
if len(parts) == 2:
agent_type, model_name = parts
else:
agent_type, model_name = parts[0], "Unknown"
return agent_type, model_name
def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
"""Extract and aggregate leaderboard stats from all SQLite databases."""
db_files = find_or_download_db()
all_stats = []
for db_file in db_files:
conn = sqlite3.connect(db_file)
agent_type, model_name = extract_agent_info(db_file)
if game_name == "Total Performance":
query = "SELECT game_name, COUNT(DISTINCT episode) AS games_played, " \
"AVG(generation_time) AS avg_gen_time, SUM(reward) AS total_rewards " \
"FROM game_results GROUP BY game_name"
else:
query = "SELECT COUNT(DISTINCT episode) AS games_played, " \
"AVG(generation_time) AS avg_gen_time, SUM(reward) AS total_rewards " \
"FROM game_results WHERE game_name = ?"
df = pd.read_sql_query(query, conn, params=(game_name,) if game_name != "Total Performance" else None)
df["agent_name"] = model_name
df["agent_type"] = agent_type
all_stats.append(df)
conn.close()
leaderboard_df = pd.concat(all_stats, ignore_index=True) if all_stats else pd.DataFrame()
return leaderboard_df
def generate_leaderboard_json():
"""Generate a JSON file containing leaderboard stats."""
leaderboard = extract_leaderboard_stats("Total Performance").to_dict(orient="records")
json_file = "results/leaderboard_stats.json"
with open(json_file, "w", encoding="utf-8") as f:
json.dump({"timestamp": datetime.utcnow().isoformat(), "leaderboard": leaderboard}, f, indent=4)
return json_file
with gr.Blocks() as interface:
with gr.Tab("Leaderboard"):
gr.Markdown("# Leaderboard")
leaderboard_game_dropdown = gr.Dropdown(["Total Performance", "tic_tac_toe"], label="Select Game")
leaderboard_table = gr.Dataframe()
download_button = gr.File(label="Download Leaderboard")
refresh_button = gr.Button("Refresh Leaderboard")
leaderboard_game_dropdown.change(extract_leaderboard_stats, inputs=[leaderboard_game_dropdown], outputs=[leaderboard_table])
refresh_button.click(extract_leaderboard_stats, inputs=[leaderboard_game_dropdown], outputs=[leaderboard_table])
download_button.click(generate_leaderboard_json, outputs=[download_button])
interface.launch()