Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from openpyxl import load_workbook
|
3 |
from openpyxl.worksheet.worksheet import Worksheet
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
import tempfile
|
6 |
import os, re
|
@@ -77,12 +78,10 @@ def process(input_file):
|
|
77 |
col_pov = header_map["product option value"]
|
78 |
col_qty = header_map["quantity"]
|
79 |
|
80 |
-
# Capture the entire header row & all row values so unmatched lines can be copied verbatim
|
81 |
in_max_col = ws_in.max_column
|
82 |
header_values = [ws_in.cell(row=header_row_idx, column=c).value for c in range(1, in_max_col + 1)]
|
83 |
|
84 |
-
|
85 |
-
entries = [] # list of dicts: {sku, power_norm, qty, row_values}
|
86 |
rows_scanned = 0
|
87 |
for r in range(header_row_idx + 1, ws_in.max_row + 1):
|
88 |
row_values = [ws_in.cell(row=r, column=c).value for c in range(1, in_max_col + 1)]
|
@@ -95,7 +94,6 @@ def process(input_file):
|
|
95 |
rows_scanned += 1
|
96 |
|
97 |
power = _normalize_power(pov)
|
98 |
-
# robust int conversion
|
99 |
try:
|
100 |
q = int(qty) if qty is not None and str(qty).strip() != "" else 0
|
101 |
except Exception:
|
@@ -111,15 +109,11 @@ def process(input_file):
|
|
111 |
"row_values": row_values
|
112 |
})
|
113 |
|
114 |
-
# --- OUTPUT
|
115 |
template_path = _download_template()
|
116 |
wb_out = load_workbook(template_path)
|
117 |
ws_out = wb_out.active
|
118 |
|
119 |
-
# Find:
|
120 |
-
# (A) "MY SKU" column to build SKU->row map (instead of "SKU")
|
121 |
-
# (B) power label row (text like 0.00, -1.25)
|
122 |
-
# (C) triplet label row (000, 125, 400) as fallback
|
123 |
mysku_header_row = None
|
124 |
mysku_col_idx = None
|
125 |
power_label_row = None
|
@@ -129,14 +123,10 @@ def process(input_file):
|
|
129 |
|
130 |
for r in range(1, 11):
|
131 |
row_vals = [ws_out.cell(row=r, column=c).value for c in range(1, ws_out.max_column + 1)]
|
132 |
-
|
133 |
-
# (A) "MY SKU" detection
|
134 |
for c, v in enumerate(row_vals, start=1):
|
135 |
if isinstance(v, str) and v.strip().lower() == "my sku":
|
136 |
mysku_header_row = r
|
137 |
mysku_col_idx = c
|
138 |
-
|
139 |
-
# (B) textual power labels
|
140 |
labels = {}
|
141 |
for c, v in enumerate(row_vals, start=1):
|
142 |
if isinstance(v, str):
|
@@ -146,8 +136,6 @@ def process(input_file):
|
|
146 |
if len(labels) >= 5 and power_label_row is None:
|
147 |
power_label_row = r
|
148 |
power_col_map = labels
|
149 |
-
|
150 |
-
# (C) numeric triplets
|
151 |
trip = {}
|
152 |
for c, v in enumerate(row_vals, start=1):
|
153 |
if isinstance(v, str) and re.fullmatch(r"\d{2,3}", v.strip()):
|
@@ -157,11 +145,10 @@ def process(input_file):
|
|
157 |
triplet_col_map = trip
|
158 |
|
159 |
if mysku_header_row is None or mysku_col_idx is None:
|
160 |
-
raise ValueError("Could not find the 'MY SKU' header in the template
|
161 |
if not (power_label_row or triplet_row):
|
162 |
-
raise ValueError("Could not find power-column headers in the template
|
163 |
|
164 |
-
# Build SKU -> row map using the "MY SKU" column
|
165 |
sku_to_row = {}
|
166 |
for r in range(mysku_header_row + 1, ws_out.max_row + 1):
|
167 |
val = ws_out.cell(row=r, column=mysku_col_idx).value
|
@@ -169,63 +156,37 @@ def process(input_file):
|
|
169 |
continue
|
170 |
sku_to_row[str(val).strip()] = r
|
171 |
|
172 |
-
|
173 |
-
|
174 |
-
for r in range(1, 11):
|
175 |
-
if r == mysku_header_row:
|
176 |
-
continue
|
177 |
-
for c in range(1, ws_out.max_column + 1):
|
178 |
-
v = ws_out.cell(row=r, column=c).value
|
179 |
-
if isinstance(v, str) and v.strip().lower() == "my sku":
|
180 |
-
summary_cell = (r, c + 1)
|
181 |
-
break
|
182 |
-
if summary_cell:
|
183 |
-
break
|
184 |
-
|
185 |
-
# Classify entries: matched vs unmatched (line-by-line), and aggregate matched ones
|
186 |
-
agg = defaultdict(int) # (sku, power) -> summed qty
|
187 |
-
unmatched_rows = [] # list of row_values (verbatim from input)
|
188 |
|
189 |
for rec in entries:
|
190 |
sku, power, qty = rec["sku"], rec["power"], rec["qty"]
|
191 |
-
# Invalid minimal fields => treat as unmatched copy-through
|
192 |
if not sku or qty <= 0 or power is None:
|
193 |
unmatched_rows.append(rec["row_values"])
|
194 |
continue
|
195 |
-
|
196 |
row_idx = sku_to_row.get(sku)
|
197 |
if row_idx is None:
|
198 |
unmatched_rows.append(rec["row_values"])
|
199 |
continue
|
200 |
-
|
201 |
col_idx = power_col_map.get(power) if power_col_map else None
|
202 |
if col_idx is None and triplet_col_map:
|
203 |
key = _power_to_triplet_digits(power)
|
204 |
col_idx = triplet_col_map.get(key)
|
205 |
-
|
206 |
if col_idx is None:
|
207 |
unmatched_rows.append(rec["row_values"])
|
208 |
continue
|
209 |
-
|
210 |
-
# It's a match — add to aggregation
|
211 |
agg[(sku, power)] += qty
|
212 |
|
213 |
-
# Write aggregated matches to the template grid
|
214 |
written_count = 0
|
215 |
-
missing_skus = set()
|
216 |
-
missing_powers = set()
|
217 |
-
|
218 |
for (sku, power), qty in agg.items():
|
219 |
row_idx = sku_to_row.get(sku)
|
220 |
if row_idx is None:
|
221 |
-
missing_skus.add(sku)
|
222 |
continue
|
223 |
col_idx = power_col_map.get(power) if power_col_map else None
|
224 |
if col_idx is None and triplet_col_map:
|
225 |
key = _power_to_triplet_digits(power)
|
226 |
col_idx = triplet_col_map.get(key)
|
227 |
if col_idx is None:
|
228 |
-
missing_powers.add(power)
|
229 |
continue
|
230 |
current = ws_out.cell(row=row_idx, column=col_idx).value
|
231 |
try:
|
@@ -238,39 +199,30 @@ def process(input_file):
|
|
238 |
ws_out.cell(row=row_idx, column=col_idx).value = current_val + int(qty)
|
239 |
written_count += 1
|
240 |
|
241 |
-
#
|
242 |
-
if summary_cell and (agg or unmatched_rows):
|
243 |
-
unique_skus = sorted({sku for (sku, _) in agg.keys()})
|
244 |
-
# Also include SKUs from unmatched rows where available
|
245 |
-
try:
|
246 |
-
# Find the index of "SKU" in the input header to extract from unmatched rows
|
247 |
-
sku_header_idx = next((i for i, v in enumerate(header_values) if isinstance(v, str) and v.strip().lower() == "sku"), None)
|
248 |
-
if sku_header_idx is not None:
|
249 |
-
for rv in unmatched_rows:
|
250 |
-
if sku_header_idx < len(rv) and rv[sku_header_idx]:
|
251 |
-
unique_skus.append(str(rv[sku_header_idx]).strip())
|
252 |
-
except Exception:
|
253 |
-
pass
|
254 |
-
if unique_skus:
|
255 |
-
ws_out.cell(row=summary_cell[0], column=summary_cell[1]).value = ", ".join(sorted(set(unique_skus)))
|
256 |
-
|
257 |
-
# --- Create/replace the "additional order" sheet with unmatched rows copied verbatim ---
|
258 |
sheet_name = "additional order"
|
259 |
if sheet_name in wb_out.sheetnames:
|
260 |
-
|
261 |
-
ws_old = wb_out[sheet_name]
|
262 |
-
wb_out.remove(ws_old)
|
263 |
ws_extra = wb_out.create_sheet(title=sheet_name)
|
264 |
|
265 |
# Write header
|
266 |
for c, val in enumerate(header_values, start=1):
|
267 |
ws_extra.cell(row=1, column=c).value = val
|
268 |
-
|
269 |
-
# Write unmatched lines
|
270 |
for i, row_vals in enumerate(unmatched_rows, start=2):
|
271 |
for c, val in enumerate(row_vals, start=1):
|
272 |
ws_extra.cell(row=i, column=c).value = val
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
# Save output
|
275 |
tmpdir = tempfile.mkdtemp()
|
276 |
out_path = os.path.join(tmpdir, "AMMU-order-form-FILLED.xlsx")
|
@@ -282,12 +234,7 @@ def process(input_file):
|
|
282 |
f"Entries written into template: {written_count}",
|
283 |
f"Unmatched rows copied to '{sheet_name}': {len(unmatched_rows)}",
|
284 |
]
|
285 |
-
if missing_skus:
|
286 |
-
log_lines.append(f"⚠️ SKUs missing during aggregate write ({len(missing_skus)}): {', '.join(sorted(missing_skus))}")
|
287 |
-
if missing_powers:
|
288 |
-
log_lines.append(f"⚠️ Powers missing during aggregate write ({len(missing_powers)}): {', '.join(sorted(missing_powers))}")
|
289 |
log = "\n".join(log_lines)
|
290 |
-
|
291 |
return out_path, log
|
292 |
|
293 |
except Exception as e:
|
@@ -299,7 +246,7 @@ with gr.Blocks(title="AMMU Order Form Filler") as demo:
|
|
299 |
"• Uses **MY SKU** column to map rows\n"
|
300 |
"• Matches power columns (text like `-1.25` or fallback triplets like `125`)\n"
|
301 |
"• Aggregates quantities for matched lines\n"
|
302 |
-
"• Copies **unmatched lines** to
|
303 |
)
|
304 |
with gr.Row():
|
305 |
in_file = gr.File(label="Upload input Excel (.xlsx)", file_types=[".xlsx"])
|
|
|
1 |
import gradio as gr
|
2 |
from openpyxl import load_workbook
|
3 |
from openpyxl.worksheet.worksheet import Worksheet
|
4 |
+
from openpyxl.utils import get_column_letter
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
import tempfile
|
7 |
import os, re
|
|
|
78 |
col_pov = header_map["product option value"]
|
79 |
col_qty = header_map["quantity"]
|
80 |
|
|
|
81 |
in_max_col = ws_in.max_column
|
82 |
header_values = [ws_in.cell(row=header_row_idx, column=c).value for c in range(1, in_max_col + 1)]
|
83 |
|
84 |
+
entries = []
|
|
|
85 |
rows_scanned = 0
|
86 |
for r in range(header_row_idx + 1, ws_in.max_row + 1):
|
87 |
row_values = [ws_in.cell(row=r, column=c).value for c in range(1, in_max_col + 1)]
|
|
|
94 |
rows_scanned += 1
|
95 |
|
96 |
power = _normalize_power(pov)
|
|
|
97 |
try:
|
98 |
q = int(qty) if qty is not None and str(qty).strip() != "" else 0
|
99 |
except Exception:
|
|
|
109 |
"row_values": row_values
|
110 |
})
|
111 |
|
112 |
+
# --- OUTPUT template ---
|
113 |
template_path = _download_template()
|
114 |
wb_out = load_workbook(template_path)
|
115 |
ws_out = wb_out.active
|
116 |
|
|
|
|
|
|
|
|
|
117 |
mysku_header_row = None
|
118 |
mysku_col_idx = None
|
119 |
power_label_row = None
|
|
|
123 |
|
124 |
for r in range(1, 11):
|
125 |
row_vals = [ws_out.cell(row=r, column=c).value for c in range(1, ws_out.max_column + 1)]
|
|
|
|
|
126 |
for c, v in enumerate(row_vals, start=1):
|
127 |
if isinstance(v, str) and v.strip().lower() == "my sku":
|
128 |
mysku_header_row = r
|
129 |
mysku_col_idx = c
|
|
|
|
|
130 |
labels = {}
|
131 |
for c, v in enumerate(row_vals, start=1):
|
132 |
if isinstance(v, str):
|
|
|
136 |
if len(labels) >= 5 and power_label_row is None:
|
137 |
power_label_row = r
|
138 |
power_col_map = labels
|
|
|
|
|
139 |
trip = {}
|
140 |
for c, v in enumerate(row_vals, start=1):
|
141 |
if isinstance(v, str) and re.fullmatch(r"\d{2,3}", v.strip()):
|
|
|
145 |
triplet_col_map = trip
|
146 |
|
147 |
if mysku_header_row is None or mysku_col_idx is None:
|
148 |
+
raise ValueError("Could not find the 'MY SKU' header in the template.")
|
149 |
if not (power_label_row or triplet_row):
|
150 |
+
raise ValueError("Could not find power-column headers in the template.")
|
151 |
|
|
|
152 |
sku_to_row = {}
|
153 |
for r in range(mysku_header_row + 1, ws_out.max_row + 1):
|
154 |
val = ws_out.cell(row=r, column=mysku_col_idx).value
|
|
|
156 |
continue
|
157 |
sku_to_row[str(val).strip()] = r
|
158 |
|
159 |
+
agg = defaultdict(int)
|
160 |
+
unmatched_rows = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
for rec in entries:
|
163 |
sku, power, qty = rec["sku"], rec["power"], rec["qty"]
|
|
|
164 |
if not sku or qty <= 0 or power is None:
|
165 |
unmatched_rows.append(rec["row_values"])
|
166 |
continue
|
|
|
167 |
row_idx = sku_to_row.get(sku)
|
168 |
if row_idx is None:
|
169 |
unmatched_rows.append(rec["row_values"])
|
170 |
continue
|
|
|
171 |
col_idx = power_col_map.get(power) if power_col_map else None
|
172 |
if col_idx is None and triplet_col_map:
|
173 |
key = _power_to_triplet_digits(power)
|
174 |
col_idx = triplet_col_map.get(key)
|
|
|
175 |
if col_idx is None:
|
176 |
unmatched_rows.append(rec["row_values"])
|
177 |
continue
|
|
|
|
|
178 |
agg[(sku, power)] += qty
|
179 |
|
|
|
180 |
written_count = 0
|
|
|
|
|
|
|
181 |
for (sku, power), qty in agg.items():
|
182 |
row_idx = sku_to_row.get(sku)
|
183 |
if row_idx is None:
|
|
|
184 |
continue
|
185 |
col_idx = power_col_map.get(power) if power_col_map else None
|
186 |
if col_idx is None and triplet_col_map:
|
187 |
key = _power_to_triplet_digits(power)
|
188 |
col_idx = triplet_col_map.get(key)
|
189 |
if col_idx is None:
|
|
|
190 |
continue
|
191 |
current = ws_out.cell(row=row_idx, column=col_idx).value
|
192 |
try:
|
|
|
199 |
ws_out.cell(row=row_idx, column=col_idx).value = current_val + int(qty)
|
200 |
written_count += 1
|
201 |
|
202 |
+
# --- Create the "additional order" tab ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
sheet_name = "additional order"
|
204 |
if sheet_name in wb_out.sheetnames:
|
205 |
+
wb_out.remove(wb_out[sheet_name])
|
|
|
|
|
206 |
ws_extra = wb_out.create_sheet(title=sheet_name)
|
207 |
|
208 |
# Write header
|
209 |
for c, val in enumerate(header_values, start=1):
|
210 |
ws_extra.cell(row=1, column=c).value = val
|
211 |
+
# Write unmatched rows
|
|
|
212 |
for i, row_vals in enumerate(unmatched_rows, start=2):
|
213 |
for c, val in enumerate(row_vals, start=1):
|
214 |
ws_extra.cell(row=i, column=c).value = val
|
215 |
|
216 |
+
# --- Auto adjust column widths ---
|
217 |
+
for c in range(1, in_max_col + 1):
|
218 |
+
max_len = 0
|
219 |
+
col_letter = get_column_letter(c)
|
220 |
+
for r in range(1, len(unmatched_rows) + 2): # +1 header
|
221 |
+
val = ws_extra.cell(row=r, column=c).value
|
222 |
+
if val is not None:
|
223 |
+
max_len = max(max_len, len(str(val)))
|
224 |
+
ws_extra.column_dimensions[col_letter].width = max_len + 2 # padding
|
225 |
+
|
226 |
# Save output
|
227 |
tmpdir = tempfile.mkdtemp()
|
228 |
out_path = os.path.join(tmpdir, "AMMU-order-form-FILLED.xlsx")
|
|
|
234 |
f"Entries written into template: {written_count}",
|
235 |
f"Unmatched rows copied to '{sheet_name}': {len(unmatched_rows)}",
|
236 |
]
|
|
|
|
|
|
|
|
|
237 |
log = "\n".join(log_lines)
|
|
|
238 |
return out_path, log
|
239 |
|
240 |
except Exception as e:
|
|
|
246 |
"• Uses **MY SKU** column to map rows\n"
|
247 |
"• Matches power columns (text like `-1.25` or fallback triplets like `125`)\n"
|
248 |
"• Aggregates quantities for matched lines\n"
|
249 |
+
"• Copies **unmatched lines** to new sheet **`additional order`**, with auto column width"
|
250 |
)
|
251 |
with gr.Row():
|
252 |
in_file = gr.File(label="Upload input Excel (.xlsx)", file_types=[".xlsx"])
|