File size: 5,788 Bytes
000787f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os, asyncio, logging
import configparser
import logging
from dotenv import load_dotenv

# LangChain imports
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_cohere import ChatCohere
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_core.messages import SystemMessage, HumanMessage

# Local .env file
load_dotenv()

def getconfig(configfile_path: str):
    """
    Read the config file
    Params
    ----------------
    configfile_path: file path of .cfg file
    """
    config = configparser.ConfigParser()
    try:
        config.read_file(open(configfile_path))
        return config
    except:
        logging.warning("config file not found")

# ---------------------------------------------------------------------
# Provider-agnostic authentication and configuration
# ---------------------------------------------------------------------
def get_auth_config(provider: str) -> dict:
    """Get authentication configuration for different providers"""
    auth_configs = {
        "openai": {"api_key": os.getenv("OPENAI_API_KEY")},
        "huggingface": {"api_key": os.getenv("HF_TOKEN")},
        "anthropic": {"api_key": os.getenv("ANTHROPIC_API_KEY")},
        "cohere": {"api_key": os.getenv("COHERE_API_KEY")},
    }
    
    if provider not in auth_configs:
        raise ValueError(f"Unsupported provider: {provider}")
    
    auth_config = auth_configs[provider]
    api_key = auth_config.get("api_key")
    
    if not api_key:
        raise RuntimeError(f"Missing API key for provider '{provider}'. Please set the appropriate environment variable.")
    
    return auth_config

# ---------------------------------------------------------------------
# Model / client initialization
# ---------------------------------------------------------------------
config = getconfig("params.cfg")

PROVIDER = config.get("generator", "PROVIDER")
MODEL = config.get("generator", "MODEL")
MAX_TOKENS = int(config.get("generator", "MAX_TOKENS"))
TEMPERATURE = float(config.get("generator", "TEMPERATURE"))

# Set up authentication for the selected provider
auth_config = get_auth_config(PROVIDER)

def get_chat_model():
    """Initialize the appropriate LangChain chat model based on provider"""
    common_params = {
        "temperature": TEMPERATURE,
        "max_tokens": MAX_TOKENS,
    }
    
    if PROVIDER == "openai":
        return ChatOpenAI(
            model=MODEL,
            openai_api_key=auth_config["api_key"],
            **common_params
        )
    elif PROVIDER == "anthropic":
        return ChatAnthropic(
            model=MODEL,
            anthropic_api_key=auth_config["api_key"],
            **common_params
        )
    elif PROVIDER == "cohere":
        return ChatCohere(
            model=MODEL,
            cohere_api_key=auth_config["api_key"],
            **common_params
        )
    elif PROVIDER == "huggingface":
        # Initialize HuggingFaceEndpoint with explicit parameters
        llm = HuggingFaceEndpoint(
            repo_id=MODEL,
            huggingfacehub_api_token=auth_config["api_key"],
            task="text-generation",
            temperature=TEMPERATURE,
            max_new_tokens=MAX_TOKENS
        )
        return ChatHuggingFace(llm=llm)
    else:
        raise ValueError(f"Unsupported provider: {PROVIDER}")

# Initialize provider-agnostic chat model
chat_model = get_chat_model()

# ---------------------------------------------------------------------
# Core generation function for both Gradio UI and MCP
# ---------------------------------------------------------------------
async def _call_llm(messages: list) -> str:
    """
    Provider-agnostic LLM call using LangChain.
    
    Args:
        messages: List of LangChain message objects
        
    Returns:
        Generated response content as string
    """
    try:
        # Use async invoke for better performance
        response = await chat_model.ainvoke(messages)
        return response.content.strip()
    except Exception as e:
        logging.exception(f"LLM generation failed with provider '{PROVIDER}' and model '{MODEL}': {e}")
        raise

def build_messages(question: str, context: str) -> list:
    """
    Build messages in LangChain format.
    
    Args:
        question: The user's question
        context: The relevant context for answering
        
    Returns:
        List of LangChain message objects
    """
    system_content = (
        "You are an expert assistant. Answer the USER question using only the "
        "CONTEXT provided. If the context is insufficient say 'I don't know.'"
    )
    
    user_content = f"### CONTEXT\n{context}\n\n### USER QUESTION\n{question}"
    
    return [
        SystemMessage(content=system_content),
        HumanMessage(content=user_content)
    ]


async def rag_generate(query: str, context: str) -> str:
    """
    Generate an answer to a query using provided context through RAG.
    
    This function takes a user query and relevant context, then uses a language model
    to generate a comprehensive answer based on the provided information.
    
    Args:
        query (str): The user's question or query
        context (str): The relevant context/documents to use for answering
        
    Returns:
        str: The generated answer based on the query and context
    """
    if not query.strip():
        return "Error: Query cannot be empty"
    
    if not context.strip():
        return "Error: Context cannot be empty"
    
    try:
        messages = build_messages(query, context)
        answer = await _call_llm(messages)
        return answer
    except Exception as e:
        logging.exception("Generation failed")
        return f"Error: {str(e)}"