Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from setfit import SetFitModel | |
| # Load the model | |
| model = SetFitModel.from_pretrained("leavoigt/vulnerable_groups") | |
| # Define the classes | |
| group_dict = { | |
| 0: 'Coastal communities', | |
| 1: 'Small island developing states (SIDS)', | |
| 2: 'Landlocked countries', | |
| 3: 'Low-income households', | |
| 4: 'Informal settlements and slums', | |
| 5: 'Rural communities', | |
| 6: 'Children and youth', | |
| 7: 'Older adults and the elderly', | |
| 8: 'Women and girls', | |
| 9: 'People with pre-existing health conditions', | |
| 10: 'People with disabilities', | |
| 11: 'Small-scale farmers and subsistence agriculture', | |
| 12: 'Fisherfolk and fishing communities', | |
| 13: 'Informal sector workers', | |
| 14: 'Children with disabilities', | |
| 15: 'Remote communities', | |
| 16: 'Young adults', | |
| 17: 'Elderly population', | |
| 18: 'Urban slums', | |
| 19: 'Men and boys', | |
| 20: 'Gender non-conforming individuals', | |
| 21: 'Pregnant women and new mothers', | |
| 22: 'Mountain communities', | |
| 23: 'Riverine and flood-prone areas', | |
| 24: 'Drought-prone regions', | |
| 25: 'Indigenous peoples', | |
| 26: 'Migrants and displaced populations', | |
| 27: 'Outdoor workers', | |
| 28: 'Small-scale farmers', | |
| 29: 'Other'} | |
| #def predict(text): | |
| # preds = model([text])[0].item() | |
| # return group_dict[preds] | |
| # App | |
| st.title("Identify references to vulnerable groups.") | |
| st.write("This app allows you to identify whether a text contains any references to vulnerable groups. This can, for example, be used to analyse policy documents.") | |
| #col1, col2 = st.columns(2) | |
| # Create text input box | |
| input_text = st.text_area('Please enter your text here') | |
| # Make predictions | |
| preds = model(input_text) | |
| #modelresponse = model_function(input) | |
| st.text_area(label ="",value=preds, height =100) | |
| # Select lab | |
| #def get_label(prediction_tensor): | |
| # print(prediction_tensor.index("1")) | |
| #key = prediction_tensor.index(1) | |
| #return group_dict[key] | |
| st.text(preds) | |
| #st.text(get_label(preds)) |