Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -105,44 +105,48 @@ if 'key0' in st.session_state:
|
|
| 105 |
|
| 106 |
# Assign dataframe a name
|
| 107 |
df_vul = st.session_state['key0']
|
| 108 |
-
|
| 109 |
-
# Header
|
| 110 |
-
st.subheader("Explore the references to vulnerable groups:")
|
| 111 |
|
| 112 |
-
|
| 113 |
-
num_paragraphs = len(df_vul['Vulnerability Label'])
|
| 114 |
-
num_references = len(df_vul[df_vul['Vulnerability Label'] != 'Other'])
|
| 115 |
-
|
| 116 |
-
st.markdown(f"""<div style="text-align: justify;"> The document has a
|
| 117 |
-
total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
|
| 118 |
-
In total, we found <span style="color: red;">{num_references}</span>
|
| 119 |
-
paragraphs that contain a reference to a vulnerable group.
|
| 120 |
-
</div>""", unsafe_allow_html=True)
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
### Pie chart
|
| 124 |
-
|
| 125 |
-
# Create a df that stores all the labels
|
| 126 |
-
df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
### Table
|
| 148 |
st.table(df_vul[df_vul['Vulnerability Label'] != 'Other'])
|
|
|
|
| 105 |
|
| 106 |
# Assign dataframe a name
|
| 107 |
df_vul = st.session_state['key0']
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
+
col1, col2 = st.columns([1,1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
with col1:
|
| 112 |
+
# Header
|
| 113 |
+
st.subheader("Explore references to vulnerable groups:")
|
| 114 |
|
| 115 |
+
# Text
|
| 116 |
+
num_paragraphs = len(df_vul['Vulnerability Label'])
|
| 117 |
+
num_references = len(df_vul[df_vul['Vulnerability Label'] != 'Other'])
|
| 118 |
+
|
| 119 |
+
st.markdown(f"""<div style="text-align: justify;"> The document contains a
|
| 120 |
+
total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
|
| 121 |
+
We found <span style="color: red;">{num_references}</span>
|
| 122 |
+
references to vulnerable group. The chart on the right shows the distribution
|
| 123 |
+
of those references. In the table below, you can find the text that has been
|
| 124 |
+
identified.</div>""", unsafe_allow_html=True)
|
| 125 |
+
|
| 126 |
+
with col2:
|
| 127 |
+
### Pie chart
|
| 128 |
+
|
| 129 |
+
# Create a df that stores all the labels
|
| 130 |
+
df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
|
| 131 |
+
|
| 132 |
+
# Count how often each label appears in the "Vulnerability Labels" column
|
| 133 |
+
label_counts = df_vul['Vulnerability Label'].value_counts().reset_index()
|
| 134 |
+
label_counts.columns = ['Label', 'Count']
|
| 135 |
+
|
| 136 |
+
# Merge the label counts with the df_label DataFrame
|
| 137 |
+
df_labels = df_labels.merge(label_counts, on='Label', how='left')
|
| 138 |
+
|
| 139 |
+
# Configure graph
|
| 140 |
+
fig = px.pie(df_labels,
|
| 141 |
+
names="Label",
|
| 142 |
+
values="Count",
|
| 143 |
+
title='Label Counts',
|
| 144 |
+
hover_name="Count",
|
| 145 |
+
color_discrete_sequence=px.colors.qualitative.Plotly
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
#Show plot
|
| 149 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 150 |
|
| 151 |
### Table
|
| 152 |
st.table(df_vul[df_vul['Vulnerability Label'] != 'Other'])
|