Spaces:
Sleeping
Sleeping
Create preprocessing.py
Browse files- utils/preprocessing.py +283 -0
utils/preprocessing.py
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from haystack.nodes.base import BaseComponent
|
| 2 |
+
from haystack.schema import Document
|
| 3 |
+
from haystack.nodes import PDFToTextOCRConverter, PDFToTextConverter
|
| 4 |
+
from haystack.nodes import TextConverter, DocxToTextConverter, PreProcessor
|
| 5 |
+
from typing import Callable, Dict, List, Optional, Text, Tuple, Union
|
| 6 |
+
from typing_extensions import Literal
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import logging
|
| 9 |
+
import re
|
| 10 |
+
import string
|
| 11 |
+
from haystack.pipelines import Pipeline
|
| 12 |
+
|
| 13 |
+
def useOCR(file_path: str)-> Text:
|
| 14 |
+
"""
|
| 15 |
+
Converts image pdfs into text, Using the Farm-haystack[OCR]
|
| 16 |
+
|
| 17 |
+
Params
|
| 18 |
+
----------
|
| 19 |
+
file_path: file_path of uploade file, returned by add_upload function in
|
| 20 |
+
uploadAndExample.py
|
| 21 |
+
|
| 22 |
+
Returns the text file as string.
|
| 23 |
+
"""
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
converter = PDFToTextOCRConverter(remove_numeric_tables=True,
|
| 27 |
+
valid_languages=["eng"])
|
| 28 |
+
docs = converter.convert(file_path=file_path, meta=None)
|
| 29 |
+
return docs[0].content
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class FileConverter(BaseComponent):
|
| 35 |
+
"""
|
| 36 |
+
Wrapper class to convert uploaded document into text by calling appropriate
|
| 37 |
+
Converter class, will use internally haystack PDFToTextOCR in case of image
|
| 38 |
+
pdf. Cannot use the FileClassifier from haystack as its doesnt has any
|
| 39 |
+
label/output class for image.
|
| 40 |
+
1. https://haystack.deepset.ai/pipeline_nodes/custom-nodes
|
| 41 |
+
2. https://docs.haystack.deepset.ai/docs/file_converters
|
| 42 |
+
3. https://github.com/deepset-ai/haystack/tree/main/haystack/nodes/file_converter
|
| 43 |
+
4. https://docs.haystack.deepset.ai/reference/file-converters-api
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
outgoing_edges = 1
|
| 47 |
+
|
| 48 |
+
def run(self, file_name: str , file_path: str, encoding: Optional[str]=None,
|
| 49 |
+
id_hash_keys: Optional[List[str]] = None,
|
| 50 |
+
) -> Tuple[dict,str]:
|
| 51 |
+
""" this is required method to invoke the component in
|
| 52 |
+
the pipeline implementation.
|
| 53 |
+
|
| 54 |
+
Params
|
| 55 |
+
----------
|
| 56 |
+
file_name: name of file
|
| 57 |
+
file_path: file_path of uploade file, returned by add_upload function in
|
| 58 |
+
uploadAndExample.py
|
| 59 |
+
|
| 60 |
+
See the links provided in Class docstring/description to see other params
|
| 61 |
+
|
| 62 |
+
Return
|
| 63 |
+
---------
|
| 64 |
+
output: dictionary, with key as identifier and value could be anything
|
| 65 |
+
we need to return. In this case its the List of Hasyatck Document
|
| 66 |
+
|
| 67 |
+
output_1: As there is only one outgoing edge, we pass 'output_1' string
|
| 68 |
+
"""
|
| 69 |
+
try:
|
| 70 |
+
if file_name.endswith('.pdf'):
|
| 71 |
+
converter = PDFToTextConverter(remove_numeric_tables=True)
|
| 72 |
+
if file_name.endswith('.txt'):
|
| 73 |
+
converter = TextConverter(remove_numeric_tables=True)
|
| 74 |
+
if file_name.endswith('.docx'):
|
| 75 |
+
converter = DocxToTextConverter()
|
| 76 |
+
except Exception as e:
|
| 77 |
+
logging.error(e)
|
| 78 |
+
return
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
documents = []
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# encoding is empty, probably should be utf-8
|
| 86 |
+
document = converter.convert(
|
| 87 |
+
file_path=file_path, meta=None,
|
| 88 |
+
encoding=encoding, id_hash_keys=id_hash_keys
|
| 89 |
+
)[0]
|
| 90 |
+
|
| 91 |
+
text = document.content
|
| 92 |
+
|
| 93 |
+
# in case of scanned/images only PDF the content might contain only
|
| 94 |
+
# the page separator (\f or \x0c). We check if is so and use
|
| 95 |
+
# use the OCR to get the text.
|
| 96 |
+
filtered = re.sub(r'\x0c', '', text)
|
| 97 |
+
|
| 98 |
+
if filtered == "":
|
| 99 |
+
logging.info("Using OCR")
|
| 100 |
+
text = useOCR(file_path)
|
| 101 |
+
|
| 102 |
+
documents.append(Document(content=text,
|
| 103 |
+
meta={"name": file_name},
|
| 104 |
+
id_hash_keys=id_hash_keys))
|
| 105 |
+
|
| 106 |
+
logging.info('file conversion succesful')
|
| 107 |
+
output = {'documents': documents}
|
| 108 |
+
return output, 'output_1'
|
| 109 |
+
|
| 110 |
+
def run_batch():
|
| 111 |
+
"""
|
| 112 |
+
we dont have requirement to process the multiple files in one go
|
| 113 |
+
therefore nothing here, however to use the custom node we need to have
|
| 114 |
+
this method for the class.
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
return
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def basic(s:str, remove_punc:bool = False):
|
| 121 |
+
|
| 122 |
+
"""
|
| 123 |
+
Performs basic cleaning of text.
|
| 124 |
+
Params
|
| 125 |
+
----------
|
| 126 |
+
s: string to be processed
|
| 127 |
+
removePunc: to remove all Punctuation including ',' and '.' or not
|
| 128 |
+
|
| 129 |
+
Returns: processed string: see comments in the source code for more info
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
# Remove URLs
|
| 133 |
+
s = re.sub(r'^https?:\/\/.*[\r\n]*', ' ', s, flags=re.MULTILINE)
|
| 134 |
+
s = re.sub(r"http\S+", " ", s)
|
| 135 |
+
|
| 136 |
+
# Remove new line characters
|
| 137 |
+
s = re.sub('\n', ' ', s)
|
| 138 |
+
|
| 139 |
+
# Remove punctuations
|
| 140 |
+
if remove_punc == True:
|
| 141 |
+
translator = str.maketrans(' ', ' ', string.punctuation)
|
| 142 |
+
s = s.translate(translator)
|
| 143 |
+
# Remove distracting single quotes and dotted pattern
|
| 144 |
+
s = re.sub("\'", " ", s)
|
| 145 |
+
s = s.replace("..","")
|
| 146 |
+
|
| 147 |
+
return s.strip()
|
| 148 |
+
|
| 149 |
+
def paraLengthCheck(paraList, max_len = 100):
|
| 150 |
+
"""
|
| 151 |
+
There are cases where preprocessor cannot respect word limit, when using
|
| 152 |
+
respect sentence boundary flag due to missing sentence boundaries.
|
| 153 |
+
Therefore we run one more round of split here for those paragraphs
|
| 154 |
+
|
| 155 |
+
Params
|
| 156 |
+
---------------
|
| 157 |
+
paraList : list of paragraphs/text
|
| 158 |
+
max_len : max length to be respected by sentences which bypassed
|
| 159 |
+
preprocessor strategy
|
| 160 |
+
|
| 161 |
+
"""
|
| 162 |
+
new_para_list = []
|
| 163 |
+
for passage in paraList:
|
| 164 |
+
# check if para exceeds words limit
|
| 165 |
+
if len(passage.content.split()) > max_len:
|
| 166 |
+
# we might need few iterations example if para = 512 tokens
|
| 167 |
+
# we need to iterate 5 times to reduce para to size limit of '100'
|
| 168 |
+
iterations = int(len(passage.content.split())/max_len)
|
| 169 |
+
for i in range(iterations):
|
| 170 |
+
temp = " ".join(passage.content.split()[max_len*i:max_len*(i+1)])
|
| 171 |
+
new_para_list.append((temp,passage.meta['page']))
|
| 172 |
+
temp = " ".join(passage.content.split()[max_len*(i+1):])
|
| 173 |
+
new_para_list.append((temp,passage.meta['page']))
|
| 174 |
+
else:
|
| 175 |
+
# paragraphs which dont need any splitting
|
| 176 |
+
new_para_list.append((passage.content, passage.meta['page']))
|
| 177 |
+
|
| 178 |
+
logging.info("New paragraphs length {}".format(len(new_para_list)))
|
| 179 |
+
return new_para_list
|
| 180 |
+
|
| 181 |
+
class UdfPreProcessor(BaseComponent):
|
| 182 |
+
"""
|
| 183 |
+
class to preprocess the document returned by FileConverter. It will check
|
| 184 |
+
for splitting strategy and splits the document by word or sentences and then
|
| 185 |
+
synthetically create the paragraphs.
|
| 186 |
+
1. https://docs.haystack.deepset.ai/docs/preprocessor
|
| 187 |
+
2. https://docs.haystack.deepset.ai/reference/preprocessor-api
|
| 188 |
+
3. https://github.com/deepset-ai/haystack/tree/main/haystack/nodes/preprocessor
|
| 189 |
+
"""
|
| 190 |
+
outgoing_edges = 1
|
| 191 |
+
|
| 192 |
+
def run(self, documents:List[Document], remove_punc:bool=False,
|
| 193 |
+
split_by: Literal["sentence", "word"] = 'sentence',
|
| 194 |
+
split_length:int = 2, split_respect_sentence_boundary:bool = False,
|
| 195 |
+
split_overlap:int = 0):
|
| 196 |
+
|
| 197 |
+
""" this is required method to invoke the component in
|
| 198 |
+
the pipeline implementation.
|
| 199 |
+
|
| 200 |
+
Params
|
| 201 |
+
----------
|
| 202 |
+
documents: documents from the output dictionary returned by Fileconverter
|
| 203 |
+
remove_punc: to remove all Punctuation including ',' and '.' or not
|
| 204 |
+
split_by: document splitting strategy either as word or sentence
|
| 205 |
+
split_length: when synthetically creating the paragrpahs from document,
|
| 206 |
+
it defines the length of paragraph.
|
| 207 |
+
split_respect_sentence_boundary: Used when using 'word' strategy for
|
| 208 |
+
splititng of text.
|
| 209 |
+
split_overlap: Number of words or sentences that overlap when creating
|
| 210 |
+
the paragraphs. This is done as one sentence or 'some words' make sense
|
| 211 |
+
when read in together with others. Therefore the overlap is used.
|
| 212 |
+
|
| 213 |
+
Return
|
| 214 |
+
---------
|
| 215 |
+
output: dictionary, with key as identifier and value could be anything
|
| 216 |
+
we need to return. In this case the output will contain 4 objects
|
| 217 |
+
the paragraphs text list as List, Haystack document, Dataframe and
|
| 218 |
+
one raw text file.
|
| 219 |
+
|
| 220 |
+
output_1: As there is only one outgoing edge, we pass 'output_1' string
|
| 221 |
+
|
| 222 |
+
"""
|
| 223 |
+
|
| 224 |
+
if split_by == 'sentence':
|
| 225 |
+
split_respect_sentence_boundary = False
|
| 226 |
+
|
| 227 |
+
else:
|
| 228 |
+
split_respect_sentence_boundary = split_respect_sentence_boundary
|
| 229 |
+
|
| 230 |
+
preprocessor = PreProcessor(
|
| 231 |
+
clean_empty_lines=True,
|
| 232 |
+
clean_whitespace=True,
|
| 233 |
+
clean_header_footer=True,
|
| 234 |
+
split_by=split_by,
|
| 235 |
+
split_length=split_length,
|
| 236 |
+
split_respect_sentence_boundary= split_respect_sentence_boundary,
|
| 237 |
+
split_overlap=split_overlap,
|
| 238 |
+
|
| 239 |
+
# will add page number only in case of PDF not for text/docx file.
|
| 240 |
+
add_page_number=True
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
for i in documents:
|
| 244 |
+
# # basic cleaning before passing it to preprocessor.
|
| 245 |
+
# i = basic(i)
|
| 246 |
+
docs_processed = preprocessor.process([i])
|
| 247 |
+
for item in docs_processed:
|
| 248 |
+
item.content = basic(item.content, remove_punc= remove_punc)
|
| 249 |
+
|
| 250 |
+
df = pd.DataFrame(docs_processed)
|
| 251 |
+
all_text = " ".join(df.content.to_list())
|
| 252 |
+
para_list = df.content.to_list()
|
| 253 |
+
logging.info('document split into {} paragraphs'.format(len(para_list)))
|
| 254 |
+
output = {'documents': docs_processed,
|
| 255 |
+
'dataframe': df,
|
| 256 |
+
'text': all_text,
|
| 257 |
+
'paraList': para_list
|
| 258 |
+
}
|
| 259 |
+
return output, "output_1"
|
| 260 |
+
def run_batch():
|
| 261 |
+
"""
|
| 262 |
+
we dont have requirement to process the multiple files in one go
|
| 263 |
+
therefore nothing here, however to use the custom node we need to have
|
| 264 |
+
this method for the class.
|
| 265 |
+
"""
|
| 266 |
+
return
|
| 267 |
+
|
| 268 |
+
def processingpipeline():
|
| 269 |
+
"""
|
| 270 |
+
Returns the preprocessing pipeline. Will use FileConverter and UdfPreProcesor
|
| 271 |
+
from utils.preprocessing
|
| 272 |
+
"""
|
| 273 |
+
|
| 274 |
+
preprocessing_pipeline = Pipeline()
|
| 275 |
+
file_converter = FileConverter()
|
| 276 |
+
custom_preprocessor = UdfPreProcessor()
|
| 277 |
+
|
| 278 |
+
preprocessing_pipeline.add_node(component=file_converter,
|
| 279 |
+
name="FileConverter", inputs=["File"])
|
| 280 |
+
preprocessing_pipeline.add_node(component = custom_preprocessor,
|
| 281 |
+
name ='UdfPreProcessor', inputs=["FileConverter"])
|
| 282 |
+
|
| 283 |
+
return preprocessing_pipeline
|