Spaces:
Sleeping
Sleeping
Update appStore/vulnerability_analysis.py
Browse files
appStore/vulnerability_analysis.py
CHANGED
|
@@ -74,4 +74,70 @@ def app():
|
|
| 74 |
st.session_state.key1 = df
|
| 75 |
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
|
|
|
| 74 |
st.session_state.key1 = df
|
| 75 |
|
| 76 |
|
| 77 |
+
def vulnerability_display():
|
| 78 |
+
|
| 79 |
+
# Assign dataframe a name
|
| 80 |
+
df_vul = st.session_state['key0']
|
| 81 |
+
st.write(df_vul)
|
| 82 |
+
|
| 83 |
+
col1, col2 = st.columns([1,1])
|
| 84 |
+
|
| 85 |
+
with col1:
|
| 86 |
+
|
| 87 |
+
# Header
|
| 88 |
+
st.subheader("Explore references to vulnerable groups:")
|
| 89 |
+
|
| 90 |
+
# Text
|
| 91 |
+
num_paragraphs = len(df_vul['Vulnerability Label'])
|
| 92 |
+
num_references = df_vul['Vulnerability Label'].apply(lambda x: 'Other' not in x).sum()
|
| 93 |
+
|
| 94 |
+
st.markdown(f"""<div style="text-align: justify;"> The document contains a
|
| 95 |
+
total of <span style="color: red;">{num_paragraphs}</span> paragraphs.
|
| 96 |
+
We identified <span style="color: red;">{num_references}</span>
|
| 97 |
+
references to vulnerable groups.</div>
|
| 98 |
+
<br>
|
| 99 |
+
In the pie chart on the right you can see the distribution of the different
|
| 100 |
+
groups defined. For a more detailed view in the text, see the paragraphs and
|
| 101 |
+
their respective labels in the table below.</div>""", unsafe_allow_html=True)
|
| 102 |
+
|
| 103 |
+
with col2:
|
| 104 |
+
|
| 105 |
+
### Bar chart
|
| 106 |
+
|
| 107 |
+
# # Create a df that stores all the labels
|
| 108 |
+
df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label'])
|
| 109 |
+
|
| 110 |
+
# Count how often each label appears in the "Vulnerability Labels" column
|
| 111 |
+
group_counts = {}
|
| 112 |
+
|
| 113 |
+
# Iterate through each sublist
|
| 114 |
+
for index, row in df_vul.iterrows():
|
| 115 |
+
|
| 116 |
+
# Iterate through each group in the sublist
|
| 117 |
+
for sublist in row['Vulnerability Label']:
|
| 118 |
+
|
| 119 |
+
# Update the count in the dictionary
|
| 120 |
+
group_counts[sublist] = group_counts.get(sublist, 0) + 1
|
| 121 |
+
|
| 122 |
+
# Create a new dataframe from group_counts
|
| 123 |
+
df_label_count = pd.DataFrame(list(group_counts.items()), columns=['Label', 'Count'])
|
| 124 |
+
|
| 125 |
+
# Merge the label counts with the df_label DataFrame
|
| 126 |
+
df_label_count = df_labels.merge(df_label_count, on='Label', how='left')
|
| 127 |
+
st.write("df_label_count")
|
| 128 |
+
|
| 129 |
+
# # Configure graph
|
| 130 |
+
# fig = px.pie(df_labels,
|
| 131 |
+
# names="Label",
|
| 132 |
+
# values="Count",
|
| 133 |
+
# title='Label Counts',
|
| 134 |
+
# hover_name="Count",
|
| 135 |
+
# color_discrete_sequence=px.colors.qualitative.Plotly
|
| 136 |
+
# )
|
| 137 |
+
|
| 138 |
+
# #Show plot
|
| 139 |
+
# st.plotly_chart(fig, use_container_width=True)
|
| 140 |
+
|
| 141 |
+
# ### Table
|
| 142 |
+
st.table(df_vul[df_vul['Vulnerability Label'] != 'Other'])
|
| 143 |
|