Spaces:
Running
Running
File size: 1,611 Bytes
5e6c5bb c573494 9ce846a c573494 9ce846a c573494 9ce846a c573494 9ce846a c573494 9ce846a c573494 9ce846a 66d0bf1 9ce846a 66d0bf1 c573494 66d0bf1 9ce846a 66d0bf1 c573494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
import torch
from transformers import VitsModel, AutoTokenizer
import soundfile as sf
import tempfile
LANG_MODEL_MAP = {
"English": "facebook/mms-tts-eng",
"Hindi": "facebook/mms-tts-hin",
"Tamil": "facebook/mms-tts-tam",
"Malayalam": "facebook/mms-tts-mal",
"Kannada": "facebook/mms-tts-kan"
}
device = "cuda" if torch.cuda.is_available() else "cpu"
cache = {}
def load_model_and_tokenizer(language):
model_name = LANG_MODEL_MAP[language]
if model_name not in cache:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = VitsModel.from_pretrained(model_name).to(device)
cache[model_name] = (tokenizer, model)
return cache[model_name]
def tts(language, text):
tokenizer, model = load_model_and_tokenizer(language)
inputs = tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
output = model(**inputs)
# Save waveform to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, output.waveform.cpu().numpy(), samplerate=16000)
return f.name
iface = gr.Interface(
fn=tts,
inputs=[
gr.Dropdown(choices=list(LANG_MODEL_MAP.keys()), label="Select Language"),
gr.Textbox(label="Enter Text", placeholder="Type something...")
],
outputs=gr.Audio(type="filepath", label="Synthesized Audio"),
title="Multilingual Text-to-Speech (MMS)",
description="Generate speech in English, Hindi, Tamil, Malayalam, or Kannada using Meta's MMS TTS models."
)
if __name__ == "__main__":
iface.launch() |