Spaces:
Running
Running
File size: 1,675 Bytes
5e6c5bb c573494 66d0bf1 c573494 66d0bf1 c573494 66d0bf1 c573494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import gradio as gr
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
import torch
import torchaudio
LANG_MODEL_MAP = {
"English": "facebook/mms-tts-eng",
"Hindi": "facebook/mms-tts-hin",
"Tamil": "facebook/mms-tts-tam",
"Malayalam": "facebook/mms-tts-mal",
"Kannada": "facebook/mms-tts-kan"
}
device = "cuda" if torch.cuda.is_available() else "cpu"
cache = {}
def load_model_and_processor(language):
model_name = LANG_MODEL_MAP[language]
if model_name not in cache:
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name).to(device)
cache[model_name] = (processor, model)
return cache[model_name]
def synthesize(language, text):
processor, model = load_model_and_processor(language)
inputs = processor(text=text, return_tensors="pt").to(device)
with torch.no_grad():
generated_ids = model.generate(**inputs)
audio = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# Decode and return waveform
waveform, sr = torchaudio.load(audio)
return sr, waveform.squeeze().numpy()
iface = gr.Interface(
fn=synthesize,
inputs=[
gr.Dropdown(choices=list(LANG_MODEL_MAP.keys()), label="Select Language"),
gr.Textbox(label="Enter Text", placeholder="Type something...")
],
outputs=gr.Audio(label="Synthesized Speech", type="numpy"),
title="Multilingual TTS - MMS Facebook",
description="A Gradio demo for multilingual TTS using Meta's MMS models. Supports English, Hindi, Tamil, Malayalam, and Kannada."
)
if __name__ == "__main__":
iface.launch() |