import gradio as gr import torch from transformers import VitsModel, AutoTokenizer import soundfile as sf import tempfile LANG_MODEL_MAP = { "English": "facebook/mms-tts-eng", "Hindi": "facebook/mms-tts-hin", "Tamil": "facebook/mms-tts-tam", "Malayalam": "facebook/mms-tts-mal", "Kannada": "facebook/mms-tts-kan" } device = "cuda" if torch.cuda.is_available() else "cpu" cache = {} def load_model_and_tokenizer(language): model_name = LANG_MODEL_MAP[language] if model_name not in cache: tokenizer = AutoTokenizer.from_pretrained(model_name) model = VitsModel.from_pretrained(model_name).to(device) cache[model_name] = (tokenizer, model) return cache[model_name] def tts(language, text): tokenizer, model = load_model_and_tokenizer(language) inputs = tokenizer(text, return_tensors="pt").to(device) with torch.no_grad(): output = model(**inputs) # Save waveform to temp file with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: sf.write(f.name, output.waveform.cpu().numpy(), samplerate=16000) return f.name iface = gr.Interface( fn=tts, inputs=[ gr.Dropdown(choices=list(LANG_MODEL_MAP.keys()), label="Select Language"), gr.Textbox(label="Enter Text", placeholder="Type something...") ], outputs=gr.Audio(type="filepath", label="Synthesized Audio"), title="Multilingual Text-to-Speech (MMS)", description="Generate speech in English, Hindi, Tamil, Malayalam, or Kannada using Meta's MMS TTS models." ) if __name__ == "__main__": iface.launch()