Spaces:
Sleeping
Sleeping
File size: 1,741 Bytes
6b8a953 8d892b3 6b8a953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import requests
from bs4 import BeautifulSoup
from transformers import AutoModelForTokenClassification, AutoTokenizer
# Set up the Hugging Face model and tokenizer for text extraction
model_name = "distilbert-base-uncased"
model = AutoModelForTokenClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def scrape_website(url):
# Send an HTTP request to the website
response = requests.get(url)
# Parse the HTML content using BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Extract the text content from the HTML
text = soup.get_text()
# Preprocess the text using the Hugging Face tokenizer
inputs = tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=512,
return_attention_mask=True,
return_tensors='pt'
)
# Use the Hugging Face model to extract the content
outputs = model(**inputs)
content = outputs.last_hidden_state[:, 0, :]
# Convert the content to a string
content_str = tokenizer.decode(content, skip_special_tokens=True)
return content_str
# Define a function to scrape multiple URLs
def scrape_multiple_websites(urls):
contents = []
for url in urls:
content = scrape_website(url)
contents.append(content)
# Join the contents of multiple URLs
joined_content = '\n\n'.join(contents)
return joined_content
# Example usage: Scrape a single URL
url = "https://www.example.com"
content = scrape_website(url)
print(content)
# Example usage: Scrape multiple URLs
urls = ["https://www.example.com", "https://www.example2.com"]
content = scrape_multiple_websites(urls)
print(content) |